Short term wind power forecasting in South Africa using neural networks

MSc (Statistics) === Department of Statistics === Wind offers an environmentally sustainable energy resource that has seen increasing global adoption in recent years. However, its intermittent, unstable and stochastic nature hampers its representation among other renewable energy sources. This work...

Full description

Bibliographic Details
Main Author: Daniel, Lucky Oghenechodja
Other Authors: Sigauke, Caston
Format: Others
Language:en
Published: 2020
Subjects:
Online Access:Daniel, Lucky Oghenechodja (2020) Short term wind power forecasting in South Africa using neural networks. University of Venda, South Africa.<http://hdl.handle.net/11602/1591>.
http://hdl.handle.net/11602/1591
Description
Summary:MSc (Statistics) === Department of Statistics === Wind offers an environmentally sustainable energy resource that has seen increasing global adoption in recent years. However, its intermittent, unstable and stochastic nature hampers its representation among other renewable energy sources. This work addresses the forecasting of wind speed, a primary input needed for wind energy generation, using data obtained from the South African Wind Atlas Project. Forecasting is carried out on a two days ahead time horizon. We investigate the predictive performance of artificial neural networks (ANN) trained with Bayesian regularisation, decision trees based stochastic gradient boosting (SGB) and generalised additive models (GAMs). The results of the comparative analysis suggest that ANN displays superior predictive performance based on root mean square error (RMSE). In contrast, SGB shows outperformance in terms of mean average error (MAE) and the related mean average percentage error (MAPE). A further comparison of two forecast combination methods involving the linear and additive quantile regression averaging show the latter forecast combination method as yielding lower prediction accuracy. The additive quantile regression averaging based prediction intervals also show outperformance in terms of validity, reliability, quality and accuracy. Interval combination methods show the median method as better than its pure average counterpart. Point forecasts combination and interval forecasting methods are found to improve forecast performance. === NRF