Acoustic models of cochlear implants

Acoustic models are useful tools to increase understanding of cochlear implant perception. Two particular issues in modelling cochlear implant perception were considered in the present study, which aimed at improving acoustic models. The first included an electricallayer in the model, while the seco...

Full description

Bibliographic Details
Main Author: Strydom, Trudie
Other Authors: Hanekom, J.J. (Johannes Jurgens)
Published: University of Pretoria 2013
Subjects:
Online Access:http://hdl.handle.net/2263/30721
Strydom, T 2010, Acoustic models of cochlear implants , PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-03312011-164852/ >
http://upetd.up.ac.za/thesis/available/etd-03312011-164852/
id ndltd-netd.ac.za-oai-union.ndltd.org-up-oai-repository.up.ac.za-2263-30721
record_format oai_dc
collection NDLTD
sources NDLTD
topic Acoustic model
Spread
Current spread
Acoustic simulation
Current decay
UCTD
spellingShingle Acoustic model
Spread
Current spread
Acoustic simulation
Current decay
UCTD
Strydom, Trudie
Acoustic models of cochlear implants
description Acoustic models are useful tools to increase understanding of cochlear implant perception. Two particular issues in modelling cochlear implant perception were considered in the present study, which aimed at improving acoustic models. The first included an electricallayer in the model, while the second manipulated synthesis signal parameters. Two parts of the study explored the effects of current decay, compression function and simultaneous stimulation, by including the electrical layer. The SPREAD model, which incorporated this layer, yielded the asymptote in speech intelligibility at seven channels observed in CI listeners. It was shown that the intensity of border channels was deemphasized in relation to more central channels. This was caused by the one-sided effects of current spread from neighbouring channels for the border channels, as opposed to the two-sided effects for the more central channels. It was theorised that more compressive mapping functions would affect spectral cues and consequently speech intelligibility, but speech intelligibility experiments did not confirm this theory. A simultaneous analogue stimulation (SAS) model, which modelled simultaneous stimulation, yielded intelligibility results that were lower than those of the SPREAD model at 16 channels. The SAS model also appeared to introduce more temporal distortion than the SPREAD model. A third part of the study endeavoured to improve correspondence of acoustic model results with cochlear implant listener results by using nine different synthesis signals. The best synthesis signal was noise-band based. The widths of these increased linearly from 0.4 mm at the apical to 8 mm at the basal end. Good correspondence between speech recognition outcomes using this synthesis signal with those of CI listeners was found. AFRIKAANS : Akoesties modelle word algemeen gebruik om die persepsie van inplantingsgebruikers beter te verstaan. Twee benaderings tot die modellering van kogleêre inplantingsgebruikerpersepsies is voorgestel om akoestiese modelle te verbeter. In die eerste benadering is die generiese model verbeter deur die byvoeging van 'n elektriese laag en in die tweede benadering is sinteseseinparameters gemanipuleer om die ooreenkoms met inplantingsgebruikersuitkomste te verbeter. Twee dele van die studie het die effek van stroomverspreiding, samedrukkings-funksie en gelyktydige stimulasie ondersoek deur die insluiting van die elektriese laag. Die SPREAD-model het die asimptoot in spraakherkenning by sewe kanale getoon. Die intensiteit van grenskanale is onderbeklemtoon in verhouding met meer sentrale kanale. Dit is veroorsaak deur die eensydige effekte van stroomverspreiding vir die grenskanale, teenoor die tweesydige effekte wat meer sentrale kanale tipies beïnvloed. Die model het gesuggereer dat meer samedrukkende funksies spektrale inligting sou affekteer, maar spraakherkenningsdata het nie hierdie teorie bevestig nie. Die gelyktydige- analoogstimulasiemodel, wat gelyktydige stimulasie gemodelleer het, het soortgelyke tendense getoon, maar met meer temporale effekte as die SPREAD-model. Die gelyktydige- analoogstimulasiemodel-model se resultate was ook swakker by 16 kanale as die SPREAD-modelresultate. Die derde deel van die studie het gepoog om beter ooreenkoms tussen modeluitkomste en inplantingsgebruikeruitkomste te verkry deur nege verskillende sinteseseine te gebruik. Die beste sintesesein was die ruisband met veranderende wydte; hierdie wydte het verbreed vanaf 0.4 mm by die apeks tot by 8 mm by die basis. 'n Goeie ooreenkoms is verkry tussen modeluitkomste en inplantingsgebruikeruitkomste deur hierdie sintesesein te gebruik. === Thesis (PhD)--University of Pretoria, 2010. === Electrical, Electronic and Computer Engineering === Unrestricted
author2 Hanekom, J.J. (Johannes Jurgens)
author_facet Hanekom, J.J. (Johannes Jurgens)
Strydom, Trudie
author Strydom, Trudie
author_sort Strydom, Trudie
title Acoustic models of cochlear implants
title_short Acoustic models of cochlear implants
title_full Acoustic models of cochlear implants
title_fullStr Acoustic models of cochlear implants
title_full_unstemmed Acoustic models of cochlear implants
title_sort acoustic models of cochlear implants
publisher University of Pretoria
publishDate 2013
url http://hdl.handle.net/2263/30721
Strydom, T 2010, Acoustic models of cochlear implants , PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-03312011-164852/ >
http://upetd.up.ac.za/thesis/available/etd-03312011-164852/
work_keys_str_mv AT strydomtrudie acousticmodelsofcochlearimplants
_version_ 1719412054422454272
spelling ndltd-netd.ac.za-oai-union.ndltd.org-up-oai-repository.up.ac.za-2263-307212021-06-23T05:09:12Z Acoustic models of cochlear implants Strydom, Trudie Hanekom, J.J. (Johannes Jurgens) strydot@tut.ac.za Acoustic model Spread Current spread Acoustic simulation Current decay UCTD Acoustic models are useful tools to increase understanding of cochlear implant perception. Two particular issues in modelling cochlear implant perception were considered in the present study, which aimed at improving acoustic models. The first included an electricallayer in the model, while the second manipulated synthesis signal parameters. Two parts of the study explored the effects of current decay, compression function and simultaneous stimulation, by including the electrical layer. The SPREAD model, which incorporated this layer, yielded the asymptote in speech intelligibility at seven channels observed in CI listeners. It was shown that the intensity of border channels was deemphasized in relation to more central channels. This was caused by the one-sided effects of current spread from neighbouring channels for the border channels, as opposed to the two-sided effects for the more central channels. It was theorised that more compressive mapping functions would affect spectral cues and consequently speech intelligibility, but speech intelligibility experiments did not confirm this theory. A simultaneous analogue stimulation (SAS) model, which modelled simultaneous stimulation, yielded intelligibility results that were lower than those of the SPREAD model at 16 channels. The SAS model also appeared to introduce more temporal distortion than the SPREAD model. A third part of the study endeavoured to improve correspondence of acoustic model results with cochlear implant listener results by using nine different synthesis signals. The best synthesis signal was noise-band based. The widths of these increased linearly from 0.4 mm at the apical to 8 mm at the basal end. Good correspondence between speech recognition outcomes using this synthesis signal with those of CI listeners was found. AFRIKAANS : Akoesties modelle word algemeen gebruik om die persepsie van inplantingsgebruikers beter te verstaan. Twee benaderings tot die modellering van kogleêre inplantingsgebruikerpersepsies is voorgestel om akoestiese modelle te verbeter. In die eerste benadering is die generiese model verbeter deur die byvoeging van 'n elektriese laag en in die tweede benadering is sinteseseinparameters gemanipuleer om die ooreenkoms met inplantingsgebruikersuitkomste te verbeter. Twee dele van die studie het die effek van stroomverspreiding, samedrukkings-funksie en gelyktydige stimulasie ondersoek deur die insluiting van die elektriese laag. Die SPREAD-model het die asimptoot in spraakherkenning by sewe kanale getoon. Die intensiteit van grenskanale is onderbeklemtoon in verhouding met meer sentrale kanale. Dit is veroorsaak deur die eensydige effekte van stroomverspreiding vir die grenskanale, teenoor die tweesydige effekte wat meer sentrale kanale tipies beïnvloed. Die model het gesuggereer dat meer samedrukkende funksies spektrale inligting sou affekteer, maar spraakherkenningsdata het nie hierdie teorie bevestig nie. Die gelyktydige- analoogstimulasiemodel, wat gelyktydige stimulasie gemodelleer het, het soortgelyke tendense getoon, maar met meer temporale effekte as die SPREAD-model. Die gelyktydige- analoogstimulasiemodel-model se resultate was ook swakker by 16 kanale as die SPREAD-modelresultate. Die derde deel van die studie het gepoog om beter ooreenkoms tussen modeluitkomste en inplantingsgebruikeruitkomste te verkry deur nege verskillende sinteseseine te gebruik. Die beste sintesesein was die ruisband met veranderende wydte; hierdie wydte het verbreed vanaf 0.4 mm by die apeks tot by 8 mm by die basis. 'n Goeie ooreenkoms is verkry tussen modeluitkomste en inplantingsgebruikeruitkomste deur hierdie sintesesein te gebruik. Thesis (PhD)--University of Pretoria, 2010. Electrical, Electronic and Computer Engineering Unrestricted 2013-09-09T07:26:37Z 2011-05-12 2013-09-09T07:26:37Z 2011-04-18 2010 2011-03-31 Thesis http://hdl.handle.net/2263/30721 Strydom, T 2010, Acoustic models of cochlear implants , PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-03312011-164852/ > B11/94/ag http://upetd.up.ac.za/thesis/available/etd-03312011-164852/ © 2010 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. University of Pretoria