Carbon Budgets and the Influence of Water Quality on Production in Intensively Managed Shrimp Ponds

Critical to advancement of marine shrimp culture in the United States is the reduction of costs associated with feeding, aeration, and water exchange. Tracking the flow of chemical components is a quantitative means of comparing different levels of each of these items which will allow refinement of...

Full description

Bibliographic Details
Main Author: Russell, Sofia Elodia
Format: Others
Published: NSUWorks 1994
Subjects:
Online Access:http://nsuworks.nova.edu/occ_stuetd/342
http://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1053&context=occ_stuetd
Description
Summary:Critical to advancement of marine shrimp culture in the United States is the reduction of costs associated with feeding, aeration, and water exchange. Tracking the flow of chemical components is a quantitative means of comparing different levels of each of these items which will allow refinement of costs. Elucidation of the path of nitrogen through the pond system was a first step in understanding how components were affected by different combinations of feed, aeration, and water exchange (Hopkins, et al., in review). In the present research, total carbon is tracked to obtain another view of the movement of chemicals through the system which are affected by various combinations of water exchange, as it relates to water quality. The primary result of this work was the production of a carbon budget for marine shrimp ponds. The budget indicated that sludge was the largest carbon component in each pond, and that phytoplankton production, using CO2 from the atmosphere, was the main carbon production method. The water quality results also indicated that if water quality is maintained, then the rate of exchange does not necessarily have to be as high as previously thought to gain high yields. In addition, filtration of pond water for water quality control does not appear as effective at water quality maintenance as small amounts of water exchange.