Low-speed wind tunnel testing of the NPS/NASA Ames Mach 6 optimized waverider

Low-speed wind tunnel tests were conducted to determine the subsonic aerodynamic characteristics of an optimized supersonic (Mach 6) conical-flow waverider designed for a deck-launched intercept mission. These tests are part of the continuing waverider research being conducted by the Naval Postgradu...

Full description

Bibliographic Details
Main Author: Cedrun, Mark E.
Other Authors: Newberry, Conrad F.
Language:en_US
Published: Monterey, California. Naval Postgraduate School 2013
Online Access:http://hdl.handle.net/10945/30832
Description
Summary:Low-speed wind tunnel tests were conducted to determine the subsonic aerodynamic characteristics of an optimized supersonic (Mach 6) conical-flow waverider designed for a deck-launched intercept mission. These tests are part of the continuing waverider research being conducted by the Naval Postgraduate School and the NASA Ames Research Center. The tests consisted of performing Alpha and Beta sweeps, at different dynamic pressures, with a 15 inch aluminum waverider model in the NPS low-speed wind tunnel. Force and moment data were then collected using a six-degree-of-freedom sting balance. Coefficients of lift, drag and pitch were calculated from the data and compared to theory and existing waverider subsonic aerodynamic performance data. Flow visualization using tufts was also done. The results of the experiments show that waverider exhibits high lift characteristics at positive angles of attack. The design also compares favorably with both subsonic thin airfoil theory and the results of the delta wing and subsonic waverider analysis done by Vanhoy. However, flow visualization showed that vortex bursting occurred at a dynamic pressure of 12. llbf at +/-15 degrees angle of attack. Based upon the data collected in this analysis, the development of an actual waverider aircraft using the NPS/NASA ames waverider design as a baseline is a plausible endeavor.