Použití moderních výpočetních metod pro simulace molekulárních spekter

Accurate computations of vibrational energies and vibrational spectra of molecules require an inclusion of the anharmonic forces. In standard computational protocols, a large vibrational Hamiltonian matrix is diagonalized, and spectral intensities are calculated for individual transitions separately...

Full description

Bibliographic Details
Main Author: Ivani, Ivan
Other Authors: Baumruk, Vladimír
Format: Dissertation
Language:English
Published: 2010
Online Access:http://www.nusl.cz/ntk/nusl-286219
id ndltd-nusl.cz-oai-invenio.nusl.cz-286219
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2862192021-03-29T05:12:04Z Použití moderních výpočetních metod pro simulace molekulárních spekter Modern computational techniques for simulations of molecular spectra Ivani, Ivan Baumruk, Vladimír Kapitán, Josef Accurate computations of vibrational energies and vibrational spectra of molecules require an inclusion of the anharmonic forces. In standard computational protocols, a large vibrational Hamiltonian matrix is diagonalized, and spectral intensities are calculated for individual transitions separately. In this work we propose an alternate direct generation of the spectral curves based on a temporal propagation of a trial vibrational wavefunction followed by a Fourier transformation. The lack of the lengthy and computer-memory demanding diagonalization makes the method suitable for larger molecules. It is especially convenient for sparse Hamiltonians that are commonly obtained within the harmonic oscillator basis set, and the algorithm is amendable to parallelization. On a model water dimer basic convergence properties are discussed. The method is then applied to vibrational Raman intensities of the fenchone compound, were it provides spectral shapes comparable with those obtained by the classical approaches. 2010 info:eu-repo/semantics/masterThesis http://www.nusl.cz/ntk/nusl-286219 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Dissertation
sources NDLTD
description Accurate computations of vibrational energies and vibrational spectra of molecules require an inclusion of the anharmonic forces. In standard computational protocols, a large vibrational Hamiltonian matrix is diagonalized, and spectral intensities are calculated for individual transitions separately. In this work we propose an alternate direct generation of the spectral curves based on a temporal propagation of a trial vibrational wavefunction followed by a Fourier transformation. The lack of the lengthy and computer-memory demanding diagonalization makes the method suitable for larger molecules. It is especially convenient for sparse Hamiltonians that are commonly obtained within the harmonic oscillator basis set, and the algorithm is amendable to parallelization. On a model water dimer basic convergence properties are discussed. The method is then applied to vibrational Raman intensities of the fenchone compound, were it provides spectral shapes comparable with those obtained by the classical approaches.
author2 Baumruk, Vladimír
author_facet Baumruk, Vladimír
Ivani, Ivan
author Ivani, Ivan
spellingShingle Ivani, Ivan
Použití moderních výpočetních metod pro simulace molekulárních spekter
author_sort Ivani, Ivan
title Použití moderních výpočetních metod pro simulace molekulárních spekter
title_short Použití moderních výpočetních metod pro simulace molekulárních spekter
title_full Použití moderních výpočetních metod pro simulace molekulárních spekter
title_fullStr Použití moderních výpočetních metod pro simulace molekulárních spekter
title_full_unstemmed Použití moderních výpočetních metod pro simulace molekulárních spekter
title_sort použití moderních výpočetních metod pro simulace molekulárních spekter
publishDate 2010
url http://www.nusl.cz/ntk/nusl-286219
work_keys_str_mv AT ivaniivan pouzitimodernichvypocetnichmetodprosimulacemolekularnichspekter
AT ivaniivan moderncomputationaltechniquesforsimulationsofmolecularspectra
_version_ 1719389099763171328