Sdílení pravděpodobnostní informace bayesovských agentů

A need for combining probability distribution arises in many decision-theoretical problems. In this work we follow articles [14] and [15] in pursuing the supra Bayesian approach [9]. A method for combining nite discrete distributions is introduced, as well as a way to deal with incomplete informatio...

Full description

Bibliographic Details
Main Author: Kalenkovich, Evgeny
Other Authors: Kárný, Miroslav
Format: Dissertation
Language:English
Published: 2010
Online Access:http://www.nusl.cz/ntk/nusl-298768
id ndltd-nusl.cz-oai-invenio.nusl.cz-298768
record_format oai_dc
spelling ndltd-nusl.cz-oai-invenio.nusl.cz-2987682017-06-27T04:42:50Z Sdílení pravděpodobnostní informace bayesovských agentů Sdílení pravděpodobnostní informace bayesovských agentů Kalenkovich, Evgeny Kárný, Miroslav Lachout, Petr A need for combining probability distribution arises in many decision-theoretical problems. In this work we follow articles [14] and [15] in pursuing the supra Bayesian approach [9]. A method for combining nite discrete distributions is introduced, as well as a way to deal with incomplete information and bounded continuous distributions. In the discrete case our approach is along the lines of, but di erent at a few key points from the thesis [20]. The result is a shifted arithmetic mean of pmfs, which is discrepant from the usual arithmetic pooling (see [9] for details). 2010 info:eu-repo/semantics/masterThesis http://www.nusl.cz/ntk/nusl-298768 eng info:eu-repo/semantics/restrictedAccess
collection NDLTD
language English
format Dissertation
sources NDLTD
description A need for combining probability distribution arises in many decision-theoretical problems. In this work we follow articles [14] and [15] in pursuing the supra Bayesian approach [9]. A method for combining nite discrete distributions is introduced, as well as a way to deal with incomplete information and bounded continuous distributions. In the discrete case our approach is along the lines of, but di erent at a few key points from the thesis [20]. The result is a shifted arithmetic mean of pmfs, which is discrepant from the usual arithmetic pooling (see [9] for details).
author2 Kárný, Miroslav
author_facet Kárný, Miroslav
Kalenkovich, Evgeny
author Kalenkovich, Evgeny
spellingShingle Kalenkovich, Evgeny
Sdílení pravděpodobnostní informace bayesovských agentů
author_sort Kalenkovich, Evgeny
title Sdílení pravděpodobnostní informace bayesovských agentů
title_short Sdílení pravděpodobnostní informace bayesovských agentů
title_full Sdílení pravděpodobnostní informace bayesovských agentů
title_fullStr Sdílení pravděpodobnostní informace bayesovských agentů
title_full_unstemmed Sdílení pravděpodobnostní informace bayesovských agentů
title_sort sdílení pravděpodobnostní informace bayesovských agentů
publishDate 2010
url http://www.nusl.cz/ntk/nusl-298768
work_keys_str_mv AT kalenkovichevgeny sdilenipravdepodobnostniinformacebayesovskychagentu
_version_ 1718471447117037568