EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM

There is growing knowledge that neuronal circuitry undergoes alteration throughout development. Experience plays a key role in the reorganization of neuronal circuitry through the various mechanisms of learning. For example, when an animal is deprived of sensory input such as light in one or both si...

Full description

Bibliographic Details
Main Author: Ofori, Ernest Kwesi
Format: Others
Published: OpenSIUC 2014
Subjects:
Online Access:https://opensiuc.lib.siu.edu/theses/1458
https://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=2472&context=theses
id ndltd-siu.edu-oai-opensiuc.lib.siu.edu-theses-2472
record_format oai_dc
spelling ndltd-siu.edu-oai-opensiuc.lib.siu.edu-theses-24722018-12-20T04:32:30Z EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM Ofori, Ernest Kwesi There is growing knowledge that neuronal circuitry undergoes alteration throughout development. Experience plays a key role in the reorganization of neuronal circuitry through the various mechanisms of learning. For example, when an animal is deprived of sensory input such as light in one or both sides of the eye, it can result in blindness on that side. In a study of rats placed in either isolated or enriched environments, those placed in enriched environments performed better on learning tests (maze test) than those placed in isolated environment. There was increased neurogenesis, synaptogenesis, myelination and angiogenesis in rats placed in enriched environments. These were all as a result of learning, which induces neuroplasticity in the nervous system. The goals of this study were to determine how evoked movement is altered by changes in key parameters of light stimulation: intensity and period and to determine if one hour of light (optogenetic) stimulation could give rise to plastic changes in the nervous system as indicated by alterations in spontaneous motility. To ascertain how evoked motor activity influences neuronal activity through learning and experience, optogenetics was employed to evoke movement in an embryonic chick at embryonic day nine (E9) after electroporation of a channelrhodopsin variant, ChIEF, into the neural tube. I first attempted to determine the optimal intensity needed to cause neuroplasticity in an embryonic chick by varying current to a LED light to produce three different light intensities. A protocol of 5 pulses of light with a period of 2 seconds was used to illuminate the right leg of 5 embryonic chicks with each intensity. To determine the optimal period of stimulation, I varied the period to 3 s and 4 s with one animal. Stimulation for an hour with a training protocol of 1800 pulses/hour (with a period of 2 s) of blue light (470 nm) was then used to illuminate the right thigh of the embryonic chick. There were varied responses to light of all intensities used for stimulation, but high light intensity (maximum - 100%) seemed to have produced the best responses in terms of producing the largest joint angle changes and shortest latencies of movement in all joints of the leg of embryonic chick. Movements of the hip and ankle joints were the most robust. This was closely followed by those of the mid (83.33%) intensity. Therefore, it can be inferred that the greater the intensity of light, the better the response. The training protocol did not produce significant changes in embryonic activity. There were some decreases in joint angles and variable spontaneous movement duration in all animals used but there could be some changes going on at the neuronal or muscular level which were beyond the scope of this study to investigate. It is my hope that this study will provide some knowledge pertinent to the treatment or management of neurodevelopmental disorders that may result in paraplegia or Erb's palsy. 2014-08-01T07:00:00Z text application/pdf https://opensiuc.lib.siu.edu/theses/1458 https://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=2472&context=theses Theses OpenSIUC Embryonic chick motor system Embryonic training Fetal neuroplasticity Motor system Neuroplasticity Optogenetics
collection NDLTD
format Others
sources NDLTD
topic Embryonic chick motor system
Embryonic training
Fetal neuroplasticity
Motor system
Neuroplasticity
Optogenetics
spellingShingle Embryonic chick motor system
Embryonic training
Fetal neuroplasticity
Motor system
Neuroplasticity
Optogenetics
Ofori, Ernest Kwesi
EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
description There is growing knowledge that neuronal circuitry undergoes alteration throughout development. Experience plays a key role in the reorganization of neuronal circuitry through the various mechanisms of learning. For example, when an animal is deprived of sensory input such as light in one or both sides of the eye, it can result in blindness on that side. In a study of rats placed in either isolated or enriched environments, those placed in enriched environments performed better on learning tests (maze test) than those placed in isolated environment. There was increased neurogenesis, synaptogenesis, myelination and angiogenesis in rats placed in enriched environments. These were all as a result of learning, which induces neuroplasticity in the nervous system. The goals of this study were to determine how evoked movement is altered by changes in key parameters of light stimulation: intensity and period and to determine if one hour of light (optogenetic) stimulation could give rise to plastic changes in the nervous system as indicated by alterations in spontaneous motility. To ascertain how evoked motor activity influences neuronal activity through learning and experience, optogenetics was employed to evoke movement in an embryonic chick at embryonic day nine (E9) after electroporation of a channelrhodopsin variant, ChIEF, into the neural tube. I first attempted to determine the optimal intensity needed to cause neuroplasticity in an embryonic chick by varying current to a LED light to produce three different light intensities. A protocol of 5 pulses of light with a period of 2 seconds was used to illuminate the right leg of 5 embryonic chicks with each intensity. To determine the optimal period of stimulation, I varied the period to 3 s and 4 s with one animal. Stimulation for an hour with a training protocol of 1800 pulses/hour (with a period of 2 s) of blue light (470 nm) was then used to illuminate the right thigh of the embryonic chick. There were varied responses to light of all intensities used for stimulation, but high light intensity (maximum - 100%) seemed to have produced the best responses in terms of producing the largest joint angle changes and shortest latencies of movement in all joints of the leg of embryonic chick. Movements of the hip and ankle joints were the most robust. This was closely followed by those of the mid (83.33%) intensity. Therefore, it can be inferred that the greater the intensity of light, the better the response. The training protocol did not produce significant changes in embryonic activity. There were some decreases in joint angles and variable spontaneous movement duration in all animals used but there could be some changes going on at the neuronal or muscular level which were beyond the scope of this study to investigate. It is my hope that this study will provide some knowledge pertinent to the treatment or management of neurodevelopmental disorders that may result in paraplegia or Erb's palsy.
author Ofori, Ernest Kwesi
author_facet Ofori, Ernest Kwesi
author_sort Ofori, Ernest Kwesi
title EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
title_short EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
title_full EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
title_fullStr EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
title_full_unstemmed EFFECT OF OPTOGENETIC STIMULATION ON NEUROPLASTICITY OF THE EMBRYONIC CHICK MOTOR SYSTEM
title_sort effect of optogenetic stimulation on neuroplasticity of the embryonic chick motor system
publisher OpenSIUC
publishDate 2014
url https://opensiuc.lib.siu.edu/theses/1458
https://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=2472&context=theses
work_keys_str_mv AT oforiernestkwesi effectofoptogeneticstimulationonneuroplasticityoftheembryonicchickmotorsystem
_version_ 1718802954255859712