Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems

Unconventional reservoir systems can best be described as petroleum (oil and/or gas) accumulations which are difficult to be characterized and produced by conventional technologies. In this work we present the development of a systematic procedure to evaluate well performance in unconventional (i.e....

Full description

Bibliographic Details
Main Author: Ilk, Dilhan
Other Authors: Blasingame, Thomas A.
Format: Others
Language:en_US
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8574
id ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2010-08-8574
record_format oai_dc
spelling ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2010-08-85742013-01-08T10:41:40ZWell Performance Analysis for Low to Ultra-low Permeability Reservoir SystemsIlk, DilhanProduction Data AnalysisReservoir EngineeringDecline Curve AnalysisUnconventional reservoir systems can best be described as petroleum (oil and/or gas) accumulations which are difficult to be characterized and produced by conventional technologies. In this work we present the development of a systematic procedure to evaluate well performance in unconventional (i.e., low to ultra-low permeability) reservoir systems. The specific tasks achieved in this work include the following: ● Integrated Diagnostics and Analysis of Production Data in Unconventional Reservoirs: We identify the challenges and common pitfalls of production analysis and provide guidelines for the analysis of production data. We provide a comprehensive workflow which consists of model-based production analysis (i.e., rate-transient or model matching approaches) complemented by traditional decline curve analysis to estimate reserves in unconventional reservoirs. In particular, we use analytical solutions (e.g., elliptical flow, horizontal well with multiple fractures solution, etc.) which are applicable to wells produced in unconventional reservoirs. ● Deconvolution: We propose to use deconvolution to identify the correlation between pressure and rate data. For our purposes we modify the B-spline deconvolution algorithm to obtain the constantpressure rate solution using cumulative production and bottomhole pressure data in real time domain. It is shown that constant-pressure rate and constant-rate pressure solutions obtained by deconvolution could identify the correlation between measured rate and pressure data when used in conjunction. ● Series of Rate-Time Relations: We develop three new main rate-time relations and five supplementary rate-time relations which utilize power-law, hyperbolic, stretched exponential, and exponential components to properly model the behavior of a given set of rate-time data. These relations are well-suited for the estimation of ultimate recovery as well as for extrapolating production into the future. While our proposed models can be used for any system, we provide application almost exclusively for wells completed in unconventional reservoirs as a means of providing estimates of time-dependent reserves. We attempt to correlate the rate-time relation model parameters versus model-based production analysis results. As example applications, we present a variety of field examples using production data acquired from tight gas, shale gas reservoir systems.Blasingame, Thomas A.Valko, Peter P.2010-10-12T22:31:58Z2010-10-14T16:08:40Z2010-10-12T22:31:58Z2010-10-14T16:08:40Z2010-082010-10-12August 2010BookThesisElectronic Dissertationtextapplication/pdfhttp://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8574en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Production Data Analysis
Reservoir Engineering
Decline Curve Analysis
spellingShingle Production Data Analysis
Reservoir Engineering
Decline Curve Analysis
Ilk, Dilhan
Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
description Unconventional reservoir systems can best be described as petroleum (oil and/or gas) accumulations which are difficult to be characterized and produced by conventional technologies. In this work we present the development of a systematic procedure to evaluate well performance in unconventional (i.e., low to ultra-low permeability) reservoir systems. The specific tasks achieved in this work include the following: ● Integrated Diagnostics and Analysis of Production Data in Unconventional Reservoirs: We identify the challenges and common pitfalls of production analysis and provide guidelines for the analysis of production data. We provide a comprehensive workflow which consists of model-based production analysis (i.e., rate-transient or model matching approaches) complemented by traditional decline curve analysis to estimate reserves in unconventional reservoirs. In particular, we use analytical solutions (e.g., elliptical flow, horizontal well with multiple fractures solution, etc.) which are applicable to wells produced in unconventional reservoirs. ● Deconvolution: We propose to use deconvolution to identify the correlation between pressure and rate data. For our purposes we modify the B-spline deconvolution algorithm to obtain the constantpressure rate solution using cumulative production and bottomhole pressure data in real time domain. It is shown that constant-pressure rate and constant-rate pressure solutions obtained by deconvolution could identify the correlation between measured rate and pressure data when used in conjunction. ● Series of Rate-Time Relations: We develop three new main rate-time relations and five supplementary rate-time relations which utilize power-law, hyperbolic, stretched exponential, and exponential components to properly model the behavior of a given set of rate-time data. These relations are well-suited for the estimation of ultimate recovery as well as for extrapolating production into the future. While our proposed models can be used for any system, we provide application almost exclusively for wells completed in unconventional reservoirs as a means of providing estimates of time-dependent reserves. We attempt to correlate the rate-time relation model parameters versus model-based production analysis results. As example applications, we present a variety of field examples using production data acquired from tight gas, shale gas reservoir systems.
author2 Blasingame, Thomas A.
author_facet Blasingame, Thomas A.
Ilk, Dilhan
author Ilk, Dilhan
author_sort Ilk, Dilhan
title Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
title_short Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
title_full Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
title_fullStr Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
title_full_unstemmed Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems
title_sort well performance analysis for low to ultra-low permeability reservoir systems
publishDate 2010
url http://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8574
work_keys_str_mv AT ilkdilhan wellperformanceanalysisforlowtoultralowpermeabilityreservoirsystems
_version_ 1716504896973307904