Assessing the Roles of Striatin Orthologs in Fungal Morphogenesis, Sexual Development and Pathogenicity

Striatin family proteins contain a caveolin binding domain, a coiled-coil motif, a calmodulin binding domain, and a WD-repeat domain. Homologs of striatin protein have been However, our knowledge of the function and the molecular mechanism of fungal striatin homologs is limited. Based on the conserv...

Full description

Bibliographic Details
Main Author: Wang, Chih-Li
Other Authors: Shaw, Brian D.
Format: Others
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9935
Description
Summary:Striatin family proteins contain a caveolin binding domain, a coiled-coil motif, a calmodulin binding domain, and a WD-repeat domain. Homologs of striatin protein have been However, our knowledge of the function and the molecular mechanism of fungal striatin homologs is limited. Based on the conserved sequences of functional domains, I hypothesized that the fungal striatin orthologs also act as scaffolding proteins that are functionally conserved among fungal species and involved in multiple types of development in the diverse kingdom Mycota. I used reverse genetic strategies to study the function of the Aspergillus nidulans striatin ortholog (strA) and the Colletotrichum graminicola striatin ortholog (str1). In assays of sexual development, the strA deletion strain (ΔstrA) produces fewer ascospores with smaller cleistothecia, while the str1 deletion strain (Δstr1) is defective in perithecia development. The ΔstrA phenotypes indicate that StrA is associated with ascosporogenesis in cleistothecia. Both ΔstrA and Δstr1 are reduced in radial growth and in conidia production. The Δstr1 strain is also altered in its spiral growth pattern and morphology of conidia and hyphopodia, but it produces appressoria similar to wild type. The pairing of nitrate non-utilizing mutants demonstrates that Str1 is required for hyphal fusion. In pathogenicity, Δstr1 is less virulent in maize anthracnose leaf blight and stalk rot. The phenotypes of Δstr1 are complemented by the Fusarium verticillioides striatin ortholog (fsr1), indicating that Fsr1 and Str1 are functionally conserved. Over-expression of StrA reveals its positive role in conidiation and the sexual production. StrA::eGFP localizes mainly to the endoplasmic reticulum. After comparing the results from these two species and other studied fungal species, I suggest that fungal striatins are involved in five types of development including hyphal growth, hyphal fusion, conidiation, sexual development, and virulence, and propose a model of fungal striatin protein interactions to account for these diverse phenotypes.