Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome

Dans le contexte de la navigation autonome en environnement urbain, une localisation précise du véhicule est importante pour une navigation sure et fiable. La faible précision des capteurs bas coût existants tels que le système GPS, nécessite l'utilisation d'autres capteurs eux aussi à fai...

Full description

Bibliographic Details
Main Author: Meilland, Maxime
Other Authors: Paris, ENMP
Language:fr
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2007ENMP0007/document
id ndltd-theses.fr-2007ENMP0007
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic SLAM
Navigation
Localisation
Suivi visuel
Synthèse de nouvelle vue
Cartographie
SLAM
Navigation
Localisation
Visual Tracking
Novel View Synthesis
Mapping
spellingShingle SLAM
Navigation
Localisation
Suivi visuel
Synthèse de nouvelle vue
Cartographie
SLAM
Navigation
Localisation
Visual Tracking
Novel View Synthesis
Mapping
Meilland, Maxime
Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
description Dans le contexte de la navigation autonome en environnement urbain, une localisation précise du véhicule est importante pour une navigation sure et fiable. La faible précision des capteurs bas coût existants tels que le système GPS, nécessite l'utilisation d'autres capteurs eux aussi à faible coût. Les caméras mesurent une information photométrique riche et précise sur l'environnement, mais nécessitent l'utilisation d'algorithmes de traitement avancés pour obtenir une information sur la géométrie et sur la position de la caméra dans l'environnement. Cette problématique est connue sous le terme de Cartographie et Localisation Simultanées (SLAM visuel). En général, les techniques de SLAM sont incrémentales et dérivent sur de longues trajectoires. Pour simplifier l'étape de localisation, il est proposé de découpler la partie cartographie et la partie localisation en deux phases: la carte est construite hors-ligne lors d'une phase d'apprentissage, et la localisation est effectuée efficacement en ligne à partir de la carte 3D de l'environnement. Contrairement aux approches classiques, qui utilisent un modèle 3D global approximatif, une nouvelle représentation égo-centrée dense est proposée. Cette représentation est composée d'un graphe d'images sphériques augmentées par l'information dense de profondeur (RGB+D), et permet de cartographier de larges environnements. Lors de la localisation en ligne, ce type de modèle apporte toute l'information nécessaire pour une localisation précise dans le voisinage du graphe, et permet de recaler en temps-réel l'image perçue par une caméra embarquée sur un véhicule, avec les images du graphe, en utilisant une technique d'alignement d'images directe. La méthode de localisation proposée, est précise, robuste aux aberrations et prend en compte les changements d'illumination entre le modèle de la base de données et les images perçues par la caméra. Finalement, la précision et la robustesse de la localisation permettent à un véhicule autonome, équipé d'une caméra, de naviguer de façon sure en environnement urbain. === In an autonomous navigation context, a precise localisation of the vehicule is important to ensure a reliable navigation. Low cost sensors such as GPS systems are inacurrate and inefficicent in urban areas, and therefore the employ of such sensors alone is not well suited for autonomous navigation. On the other hand, camera sensors provide a dense photometric measure that can be processed to obtain both localisation and mapping information. In the robotics community, this problem is well known as Simultaneous Localisation and Mapping (SLAM) and it has been studied for the last thirty years. In general, SLAM algorithms are incremental and prone to drift, thus such methods may not be efficient in large scale environments for real-time localisation. Clearly, an a-priori 3D model simplifies the localisation and navigation tasks since it allows to decouple the structure and motion estimation problems. Indeed, the map can be previously computed during a learning phase, whilst the localisation can be handled in real-time using a single camera and the pre-computed model. Classic global 3D model representations are usually inacurrate and photometrically inconsistent. Alternatively, it is proposed to use an ego-centric model that represents, as close as possible, real sensor measurements. This representation is composed of a graph of locally accurate spherical panoramas augmented with dense depth information. These augmented panoramas allow to generate varying viewpoints through novel view synthesis. To localise a camera navigating locally inside the graph, we use the panoramas together with a direct registration technique. The proposed localisation method is accurate, robust to outliers and can handle large illumination changes. Finally, autonomous navigation in urban environments is performed using the learnt model, with only a single camera to compute localisation.
author2 Paris, ENMP
author_facet Paris, ENMP
Meilland, Maxime
author Meilland, Maxime
author_sort Meilland, Maxime
title Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
title_short Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
title_full Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
title_fullStr Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
title_full_unstemmed Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome
title_sort cartographie rgb-d dense pour la localisation visuelle temps-réel et la navigation autonome
publishDate 2012
url http://www.theses.fr/2007ENMP0007/document
work_keys_str_mv AT meillandmaxime cartographiergbddensepourlalocalisationvisuelletempsreeletlanavigationautonome
AT meillandmaxime densergbdmappingforrealtimelocalisationandautonomousnavigation
_version_ 1716805294672052224
spelling ndltd-theses.fr-2007ENMP00072015-06-06T04:16:23Z Cartographie RGB-D dense pour la localisation visuelle temps-réel et la navigation autonome Dense RGB-D mapping for real-time localisation and autonomous navigation SLAM Navigation Localisation Suivi visuel Synthèse de nouvelle vue Cartographie SLAM Navigation Localisation Visual Tracking Novel View Synthesis Mapping Dans le contexte de la navigation autonome en environnement urbain, une localisation précise du véhicule est importante pour une navigation sure et fiable. La faible précision des capteurs bas coût existants tels que le système GPS, nécessite l'utilisation d'autres capteurs eux aussi à faible coût. Les caméras mesurent une information photométrique riche et précise sur l'environnement, mais nécessitent l'utilisation d'algorithmes de traitement avancés pour obtenir une information sur la géométrie et sur la position de la caméra dans l'environnement. Cette problématique est connue sous le terme de Cartographie et Localisation Simultanées (SLAM visuel). En général, les techniques de SLAM sont incrémentales et dérivent sur de longues trajectoires. Pour simplifier l'étape de localisation, il est proposé de découpler la partie cartographie et la partie localisation en deux phases: la carte est construite hors-ligne lors d'une phase d'apprentissage, et la localisation est effectuée efficacement en ligne à partir de la carte 3D de l'environnement. Contrairement aux approches classiques, qui utilisent un modèle 3D global approximatif, une nouvelle représentation égo-centrée dense est proposée. Cette représentation est composée d'un graphe d'images sphériques augmentées par l'information dense de profondeur (RGB+D), et permet de cartographier de larges environnements. Lors de la localisation en ligne, ce type de modèle apporte toute l'information nécessaire pour une localisation précise dans le voisinage du graphe, et permet de recaler en temps-réel l'image perçue par une caméra embarquée sur un véhicule, avec les images du graphe, en utilisant une technique d'alignement d'images directe. La méthode de localisation proposée, est précise, robuste aux aberrations et prend en compte les changements d'illumination entre le modèle de la base de données et les images perçues par la caméra. Finalement, la précision et la robustesse de la localisation permettent à un véhicule autonome, équipé d'une caméra, de naviguer de façon sure en environnement urbain. In an autonomous navigation context, a precise localisation of the vehicule is important to ensure a reliable navigation. Low cost sensors such as GPS systems are inacurrate and inefficicent in urban areas, and therefore the employ of such sensors alone is not well suited for autonomous navigation. On the other hand, camera sensors provide a dense photometric measure that can be processed to obtain both localisation and mapping information. In the robotics community, this problem is well known as Simultaneous Localisation and Mapping (SLAM) and it has been studied for the last thirty years. In general, SLAM algorithms are incremental and prone to drift, thus such methods may not be efficient in large scale environments for real-time localisation. Clearly, an a-priori 3D model simplifies the localisation and navigation tasks since it allows to decouple the structure and motion estimation problems. Indeed, the map can be previously computed during a learning phase, whilst the localisation can be handled in real-time using a single camera and the pre-computed model. Classic global 3D model representations are usually inacurrate and photometrically inconsistent. Alternatively, it is proposed to use an ego-centric model that represents, as close as possible, real sensor measurements. This representation is composed of a graph of locally accurate spherical panoramas augmented with dense depth information. These augmented panoramas allow to generate varying viewpoints through novel view synthesis. To localise a camera navigating locally inside the graph, we use the panoramas together with a direct registration technique. The proposed localisation method is accurate, robust to outliers and can handle large illumination changes. Finally, autonomous navigation in urban environments is performed using the learnt model, with only a single camera to compute localisation. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2007ENMP0007/document Meilland, Maxime 2012-03-28 Paris, ENMP Rives, Patrick Comport, Andrew