Summary: | Le sujet de la thèse est la quantification par déformation non formelle des espaces symétriques symplectiques. L’étude est motivée par une conjecture d’Alan Weinstein reliant l’aire symplectique de triangles dits doubles, et la phase de certaines intégrales oscillantes décrivant les quantifications. Nous étudions l’existence et l’unicité des points-milieux et des triangles doubles dans les espaces symétriques, et obtenons un résultat généralisant le théorème de Dixmier-Saito. Nous introduisons de nouveaux outils pour l’étude de la structure des espaces symétriques symplectiques, à savoir les systèmes primitifs, la réduction symplectique et la double extension. Finalement, nous décrivons un nouveau schéma de quantification adapté à ces structures, et obtenons des formules de quantifications explicites pour une nouvelle classe d’espaces. A l’aire de celles-ci, nous donnons de nouvelles déformations universelles non formelles. === The thesis is concerned with the non-formal deformation quantization of solvable symplectic symmetric spaces. The study is motivated by a conjecture of Alan Weinstein relating the symplectic area of the so-called double triangles to the phase of some oscillatory integrals describing the quantizations. We first study the existence and uniqueness of midpoints and double triangles in symmetric spaces, and obtain in the course a result generalizing the Dixmier-Saito theorem to that case. We then introduce new tools in the study of the structure theory of symplectic symmetric spaces, namely primitive systems, symplectic reduction and double extensions. Finally, we devise a new quantization scheme for these spaces which is compatible with the above structures, and compute explicit quantization formulas for a new class of symplectic symmetric spaces. Using these, we provide new non-formal universal deformation formulas for the actions of some associated symplectic Lie groups.
|