Polyamidoamine epichlorohydrin-based papers : mechanisms of wet strength development and paper repulping

Le travail présenté dans ce manuscrit s’intéresse au mode d’action des résines thermodurcissables utilisées pour conférer au matériau papier des propriétés spécifiques. En effet, certains papiers sont destinés, au cours de leur usage, à être en contact avec des liquides et en particulier de l’eau. C...

Full description

Bibliographic Details
Main Author: Siqueira, Eder José
Other Authors: Grenoble
Language:en
Published: 2012
Subjects:
620
Online Access:http://www.theses.fr/2012GRENI035/document
Description
Summary:Le travail présenté dans ce manuscrit s’intéresse au mode d’action des résines thermodurcissables utilisées pour conférer au matériau papier des propriétés spécifiques. En effet, certains papiers sont destinés, au cours de leur usage, à être en contact avec des liquides et en particulier de l’eau. C’est le cas, par exemple, des papiers absorbants, de certains papiers filtres, mais aussi de papiers pour étiquettes ou pour billets de banque. En présence d’eau, les papiers perdent rapidement leur résistance mécanique, essentiellement due à la présence en grand nombre de liaisons hydrogène, d’où la nécessité d’un traitement : l’objectif est de maintenir un certain niveau de résistance des papiers saturés en eau. Ces traitements consistent à introduire dans la suspension fibreuse, en cours d’élaboration, des pré-polymères cationiques s’adsorbant à la surface des fibres. Après la formation de la feuille de papier, la feuille humide est séchée et c’est au cours de cette étape que s’amorce la réticulation de ces polymères. Elle conduit à la formation d’un réseau tridimensionnel de polymère dans le matelas fibreux. Ce réseau permet au papier de conserver ses propriétés mécaniques lorsqu’il est en contact avec de l’eau. Il présente ce que l’on appelle communément une résistance à l’état humide (REH). Un des inconvénients de ce type de traitement est lié aux difficultés de recyclage des papiers obtenus. Il nécessite un traitement particulièrement intensif et coûteux qui couple une action mécanique (désintégration, dépastillage) à une action chimique (utilisation d’hydroxyde de sodium, par exemple). Même si ces produits sont largement utilisés, les mécanismes mis en jeu que ce soit pour le développement des propriétés de REH ou pour le recyclage ne sont pas totalement compris. Dans ce contexte, ce travail a pour objectif d’étudier le mode d’action de pré-polymères de polyamideamine épichlorhydrine (PAE), couramment utilisés en papeterie pour conférer au matériau papier une résistance à l’état humide (REH). Il s’intéresse à la caractérisation de solutions commerciales de PAE et à l’étude des mécanismes réactionnels de ces pré-polymères. Il traite également de l’effet de certains paramètres de production du papier sur l’efficacité des traitements. Enfin, il apporte de éléments nouveaux sur la compréhension de l’étape de recyclage. === Polyamideamine epichlorohydrin (PAE) resin is a water soluble additive and the most used permanent wet strength additive in alkaline conditions for preparing wet strengthened papers. In this thesis, we studied some properties of PAE resins and wet strengthened papers prepared from them. In order to elucidate PAE structure, liquid state, 1H and 13C NMR was performed and permitted signals assignment of PAE structure. PAE films were prepared to study cross-linking reactions and then thermal and ageing treatments were performed. According to our results, the main PAE cross-linking reaction occurs by a nucleophilic attack of N atoms in the PAE and/or polyamideamine structures forming 2-propanol bridges between PAE macromolecules. A secondary contribution of ester linkages to the PAE cross-linking was also observed. However, this reaction, which is thermally induced, only occurs under anhydrous conditions. The mechanism related to wet strength development of PAE-based papers was studied by using CMC as a model compound for cellulosic fibres and PAE-CMC interactions as a model for PAE-fibres interactions. Based on results from NMR and FTIR, we clearly showed that PAE react with CMC that is when carboxylic groups are present in great amounts. Consequently, as the number of carboxylic groups present in lignocellulosic fibres is considerably less important and the resulting formed ester bonds are hydrolysable, we postulate that ester bond formation has a negligible impact on the wet strength of PAE-based papers. In the second part of this work, a 100% Eucalyptus pulp suspension was used to prepare PAE-based papers. PAE was added at different dosages (0.4, 0.6 and 1%) into the pulp suspension and its adsorption was indirectly followed by measuring the zeta potential. Results indicate that the adsorption, reconformation and/or penetration phenomena reach an apparent equilibrium between 10 and 30 min. Moreover, we showed that the paper dry strength was not significantly affected by the conductivity level (from 100 to 3000 µS/cm) of the pulp suspension. However, the conductivity has an impact on the wet strength and this effect seems to be enhanced for the highest PAE dosage (1%). We also demonstrated that storing the treated paper under controlled conditions or boosting the PAE cross-linking with a thermal post-treatment does not necessarily lead to the same wet strength. Degrading studies of cross-linked PAE films showed that PAE degradation in a persulfate solution at alkaline medium was more effective. A preliminary study of industrial PAE-based papers (coated and uncoated papers) was also performed. For uncoated paper, persulfate treatment was the most efficient. For coated papers, all treatments were inefficient in the used conditions, although a decrease of the wet tensile force of degraded samples was observed. The main responsible of the decrease of persulfate efficiency for coated papers was probably related to side reactions of free radicals with the coating constituents.