Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques

La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation...

Full description

Bibliographic Details
Main Author: Calvié, Emilie
Other Authors: Lyon, INSA
Language:fr
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012ISAL0098
id ndltd-theses.fr-2012ISAL0098
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Caractérisation du matériau
Contrôle in situ
Nanoindentation
Microscopie électronique en transmission
Céramique
Zircone
Alumine
Characterization of material
In situ control
Nanoindentation
TEM - Transmission electronic microscopy
Zirconia
Alumina
620.112 707 2
spellingShingle Caractérisation du matériau
Contrôle in situ
Nanoindentation
Microscopie électronique en transmission
Céramique
Zircone
Alumine
Characterization of material
In situ control
Nanoindentation
TEM - Transmission electronic microscopy
Zirconia
Alumina
620.112 707 2
Calvié, Emilie
Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
description La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation instrumentée… Aujourd’hui, un intérêt particulier est porté sur les nanomatériaux et matériaux nanostructurés car ils présentent souvent des propriétés différentes et plus intéressantes. La nanoindentation instrumentée, notamment, permet de déterminer des paramètres matériaux de manière locale. Cependant, le comportement en temps réel ne peut être observé et l’échantillon ne doit pas être de dimension trop faible (typiquement, l’étude de nanoparticules n’est pas envisageable). Le principal atout de la nanoindentation in situ en Microscopie Electronique en Transmission vis-à-vis des autres techniques existantes est la possibilité d’étudier le comportement de nano-objets ou des comportements très locaux et en temps réel, tout en observant les transformations subies par le matériau. Dans cette étude, nous avons évalué les potentialités de cette nouvelle technique via l’analyse de céramiques très étudiées au laboratoire notamment en tant que biomatériaux : la zircone stabilisée et l’alumine. Dans le cas de la zircone (stabilisée à l’yttrium ou au cérium), le but était de localiser à l’échelle nanométrique les contraintes responsables ou inhérentes à la transformation de phase quadratique-monoclinique, phénomène ayant une très grande influence sur les propriétés du matériau massif. Pour ce faire, après avoir déterminé une technique de préparation adaptée, nous proposons une voie d’étude pour la localisation des contraintes liées à la transformation de phase : le CBED (Convergent Beam Electron Diffraction) couplé à la nanoindentation in situ. Dans le cas de l’alumine, l’objectif était d’étudier le matériau (commercial et non un matériau modèle) dans sa forme originelle à savoir sous forme de nanoparticules d’alumine de transition. L’idée était d’étudier le comportement de ces nanoparticules sous compression. Nous avons notamment constaté que ces particules pouvaient subir une grande déformation plastique à température ambiante. Nous avons pu également, sur quelques particules, obtenir une série d’images en cours de compression ainsi que la courbe de charge-déplacement correspondante. Ces résultats ont ensuite été soumis à une analyse des images couplée à une simulation de type Eléments Finis (réalisées par le LAMCOS). === Knowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab).
author2 Lyon, INSA
author_facet Lyon, INSA
Calvié, Emilie
author Calvié, Emilie
author_sort Calvié, Emilie
title Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
title_short Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
title_full Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
title_fullStr Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
title_full_unstemmed Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques
title_sort contribution de la nanoindentation in situ en microscopie electronique en transmission à l'étude des céramiques
publishDate 2012
url http://www.theses.fr/2012ISAL0098
work_keys_str_mv AT calvieemilie contributiondelananoindentationinsituenmicroscopieelectroniqueentransmissionaletudedesceramiques
AT calvieemilie contributionofinsitunanoindentationintransmissionelectronmicroscopytothestudyofceramics
_version_ 1719250680554717184
spelling ndltd-theses.fr-2012ISAL00982019-09-14T03:30:31Z Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques Contribution of in situ nanoindentation in Transmission Electron Microscopy to the study of ceramics Caractérisation du matériau Contrôle in situ Nanoindentation Microscopie électronique en transmission Céramique Zircone Alumine Characterization of material In situ control Nanoindentation TEM - Transmission electronic microscopy Zirconia Alumina 620.112 707 2 La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation instrumentée… Aujourd’hui, un intérêt particulier est porté sur les nanomatériaux et matériaux nanostructurés car ils présentent souvent des propriétés différentes et plus intéressantes. La nanoindentation instrumentée, notamment, permet de déterminer des paramètres matériaux de manière locale. Cependant, le comportement en temps réel ne peut être observé et l’échantillon ne doit pas être de dimension trop faible (typiquement, l’étude de nanoparticules n’est pas envisageable). Le principal atout de la nanoindentation in situ en Microscopie Electronique en Transmission vis-à-vis des autres techniques existantes est la possibilité d’étudier le comportement de nano-objets ou des comportements très locaux et en temps réel, tout en observant les transformations subies par le matériau. Dans cette étude, nous avons évalué les potentialités de cette nouvelle technique via l’analyse de céramiques très étudiées au laboratoire notamment en tant que biomatériaux : la zircone stabilisée et l’alumine. Dans le cas de la zircone (stabilisée à l’yttrium ou au cérium), le but était de localiser à l’échelle nanométrique les contraintes responsables ou inhérentes à la transformation de phase quadratique-monoclinique, phénomène ayant une très grande influence sur les propriétés du matériau massif. Pour ce faire, après avoir déterminé une technique de préparation adaptée, nous proposons une voie d’étude pour la localisation des contraintes liées à la transformation de phase : le CBED (Convergent Beam Electron Diffraction) couplé à la nanoindentation in situ. Dans le cas de l’alumine, l’objectif était d’étudier le matériau (commercial et non un matériau modèle) dans sa forme originelle à savoir sous forme de nanoparticules d’alumine de transition. L’idée était d’étudier le comportement de ces nanoparticules sous compression. Nous avons notamment constaté que ces particules pouvaient subir une grande déformation plastique à température ambiante. Nous avons pu également, sur quelques particules, obtenir une série d’images en cours de compression ainsi que la courbe de charge-déplacement correspondante. Ces résultats ont ensuite été soumis à une analyse des images couplée à une simulation de type Eléments Finis (réalisées par le LAMCOS). Knowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab). Electronic Thesis or Dissertation Text fr http://www.theses.fr/2012ISAL0098 Calvié, Emilie 2012-10-18 Lyon, INSA Joly-Pottuz, Lucile Masenelli-Varlot, Karine