Multi-modal similarity learning for 3D deformable registration of medical images
Alors que la perspective de la fusion d’images médicales capturées par des systèmes d’imageries de type différent est largement contemplée, la mise en pratique est toujours victime d’un obstacle théorique : la définition d’une mesure de similarité entre les images. Des efforts dans le domaine ont re...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2013
|
Subjects: | |
Online Access: | http://www.theses.fr/2013ECAP0055/document |
id |
ndltd-theses.fr-2013ECAP0055 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Apprentissage statistique Recalage déformable Apprentissage de métrique Machine-learning Deformable registration Metric-learning |
spellingShingle |
Apprentissage statistique Recalage déformable Apprentissage de métrique Machine-learning Deformable registration Metric-learning Michel, Fabrice Multi-modal similarity learning for 3D deformable registration of medical images |
description |
Alors que la perspective de la fusion d’images médicales capturées par des systèmes d’imageries de type différent est largement contemplée, la mise en pratique est toujours victime d’un obstacle théorique : la définition d’une mesure de similarité entre les images. Des efforts dans le domaine ont rencontrés un certain succès pour certains types d’images, cependant la définition d’un critère de similarité entre les images quelle que soit leur origine et un des plus gros défis en recalage d’images déformables. Dans cette thèse, nous avons décidé de développer une approche générique pour la comparaison de deux types de modalités donnés. Les récentes avancées en apprentissage statistique (Machine Learning) nous ont permis de développer des solutions innovantes pour la résolution de ce problème complexe. Pour appréhender le problème de la comparaison de données incommensurables, nous avons choisi de le regarder comme un problème de plongement de données : chacun des jeux de données est plongé dans un espace commun dans lequel les comparaisons sont possibles. A ces fins, nous avons exploré la projection d’un espace de données image sur l’espace de données lié à la seconde image et aussi la projection des deux espaces de données dans un troisième espace commun dans lequel les calculs sont conduits. Ceci a été entrepris grâce à l’étude des correspondances entre les images dans une base de données images pré-alignées. Dans la poursuite de ces buts, de nouvelles méthodes ont été développées que ce soit pour la régression d’images ou pour l’apprentissage de métrique multimodale. Les similarités apprises résultantes sont alors incorporées dans une méthode plus globale de recalage basée sur l’optimisation discrète qui diminue le besoin d’un critère différentiable pour la recherche de solution. Enfin nous explorons une méthode qui permet d’éviter le besoin d’une base de données pré-alignées en demandant seulement des données annotées (segmentations) par un spécialiste. De nombreuses expériences sont conduites sur deux bases de données complexes (Images d’IRM pré-alignées et Images TEP/Scanner) dans le but de justifier les directions prises par nos approches. === Even though the prospect of fusing images issued by different medical imagery systems is highly contemplated, the practical instantiation of it is subject to a theoretical hurdle: the definition of a similarity between images. Efforts in this field have proved successful for select pairs of images; however defining a suitable similarity between images regardless of their origin is one of the biggest challenges in deformable registration. In this thesis, we chose to develop generic approaches that allow the comparison of any two given modality. The recent advances in Machine Learning permitted us to provide innovative solutions to this very challenging problem. To tackle the problem of comparing incommensurable data we chose to view it as a data embedding problem where one embeds all the data in a common space in which comparison is possible. To this end, we explored the projection of one image space onto the image space of the other as well as the projection of both image spaces onto a common image space in which the comparison calculations are conducted. This was done by the study of the correspondences between image features in a pre-aligned dataset. In the pursuit of these goals, new methods for image regression as well as multi-modal metric learning methods were developed. The resulting learned similarities are then incorporated into a discrete optimization framework that mitigates the need for a differentiable criterion. Lastly we investigate on a new method that discards the constraint of a database of images that are pre-aligned, only requiring data annotated (segmented) by a physician. Experiments are conducted on two challenging medical images data-sets (Pre-Aligned MRI images and PET/CT images) to justify the benefits of our approach. |
author2 |
Châtenay-Malabry, Ecole centrale de Paris |
author_facet |
Châtenay-Malabry, Ecole centrale de Paris Michel, Fabrice |
author |
Michel, Fabrice |
author_sort |
Michel, Fabrice |
title |
Multi-modal similarity learning for 3D deformable registration of medical images |
title_short |
Multi-modal similarity learning for 3D deformable registration of medical images |
title_full |
Multi-modal similarity learning for 3D deformable registration of medical images |
title_fullStr |
Multi-modal similarity learning for 3D deformable registration of medical images |
title_full_unstemmed |
Multi-modal similarity learning for 3D deformable registration of medical images |
title_sort |
multi-modal similarity learning for 3d deformable registration of medical images |
publishDate |
2013 |
url |
http://www.theses.fr/2013ECAP0055/document |
work_keys_str_mv |
AT michelfabrice multimodalsimilaritylearningfor3ddeformableregistrationofmedicalimages AT michelfabrice titrefrancaisnonfourni |
_version_ |
1718623659836309504 |
spelling |
ndltd-theses.fr-2013ECAP00552018-04-07T04:46:58Z Multi-modal similarity learning for 3D deformable registration of medical images Titre français non fourni Apprentissage statistique Recalage déformable Apprentissage de métrique Machine-learning Deformable registration Metric-learning Alors que la perspective de la fusion d’images médicales capturées par des systèmes d’imageries de type différent est largement contemplée, la mise en pratique est toujours victime d’un obstacle théorique : la définition d’une mesure de similarité entre les images. Des efforts dans le domaine ont rencontrés un certain succès pour certains types d’images, cependant la définition d’un critère de similarité entre les images quelle que soit leur origine et un des plus gros défis en recalage d’images déformables. Dans cette thèse, nous avons décidé de développer une approche générique pour la comparaison de deux types de modalités donnés. Les récentes avancées en apprentissage statistique (Machine Learning) nous ont permis de développer des solutions innovantes pour la résolution de ce problème complexe. Pour appréhender le problème de la comparaison de données incommensurables, nous avons choisi de le regarder comme un problème de plongement de données : chacun des jeux de données est plongé dans un espace commun dans lequel les comparaisons sont possibles. A ces fins, nous avons exploré la projection d’un espace de données image sur l’espace de données lié à la seconde image et aussi la projection des deux espaces de données dans un troisième espace commun dans lequel les calculs sont conduits. Ceci a été entrepris grâce à l’étude des correspondances entre les images dans une base de données images pré-alignées. Dans la poursuite de ces buts, de nouvelles méthodes ont été développées que ce soit pour la régression d’images ou pour l’apprentissage de métrique multimodale. Les similarités apprises résultantes sont alors incorporées dans une méthode plus globale de recalage basée sur l’optimisation discrète qui diminue le besoin d’un critère différentiable pour la recherche de solution. Enfin nous explorons une méthode qui permet d’éviter le besoin d’une base de données pré-alignées en demandant seulement des données annotées (segmentations) par un spécialiste. De nombreuses expériences sont conduites sur deux bases de données complexes (Images d’IRM pré-alignées et Images TEP/Scanner) dans le but de justifier les directions prises par nos approches. Even though the prospect of fusing images issued by different medical imagery systems is highly contemplated, the practical instantiation of it is subject to a theoretical hurdle: the definition of a similarity between images. Efforts in this field have proved successful for select pairs of images; however defining a suitable similarity between images regardless of their origin is one of the biggest challenges in deformable registration. In this thesis, we chose to develop generic approaches that allow the comparison of any two given modality. The recent advances in Machine Learning permitted us to provide innovative solutions to this very challenging problem. To tackle the problem of comparing incommensurable data we chose to view it as a data embedding problem where one embeds all the data in a common space in which comparison is possible. To this end, we explored the projection of one image space onto the image space of the other as well as the projection of both image spaces onto a common image space in which the comparison calculations are conducted. This was done by the study of the correspondences between image features in a pre-aligned dataset. In the pursuit of these goals, new methods for image regression as well as multi-modal metric learning methods were developed. The resulting learned similarities are then incorporated into a discrete optimization framework that mitigates the need for a differentiable criterion. Lastly we investigate on a new method that discards the constraint of a database of images that are pre-aligned, only requiring data annotated (segmented) by a physician. Experiments are conducted on two challenging medical images data-sets (Pre-Aligned MRI images and PET/CT images) to justify the benefits of our approach. Electronic Thesis or Dissertation Text en http://www.theses.fr/2013ECAP0055/document Michel, Fabrice 2013-10-04 Châtenay-Malabry, Ecole centrale de Paris Paragios, Nikos |