Kernel methods for gene regulatory network inference

De nouvelles technologies, notamment les puces à adn, multiplient la quantité de données disponibles pour la biologie moléculaire. dans ce contexte, des méthodes informatiques et mathématiques sont activement développées pour extraire le plus d'information d'un grand nombre de données. en...

Full description

Bibliographic Details
Main Author: Fouchet, Arnaud
Other Authors: Evry-Val d'Essonne
Language:en
Published: 2014
Subjects:
Online Access:http://www.theses.fr/2014EVRY0058/document
id ndltd-theses.fr-2014EVRY0058
record_format oai_dc
spelling ndltd-theses.fr-2014EVRY00582019-04-17T05:10:37Z Kernel methods for gene regulatory network inference Méthodes à noyaux scalaires pour l'inférence de réseaux de régulations géniques Noyaux multiples Dérivées partielles De nouvelles technologies, notamment les puces à adn, multiplient la quantité de données disponibles pour la biologie moléculaire. dans ce contexte, des méthodes informatiques et mathématiques sont activement développées pour extraire le plus d'information d'un grand nombre de données. en particulier, le problème d'inférence de réseaux de régulation génique a été abordé au moyen de multiples modèles mathématiques et statistiques, des plus basiques (corrélation, modèle booléen ou linéaire) aux plus sophistiqués (arbre de régression, modèles bayésiens avec variables cachées). malgré leurs qualités pour des problèmes similaires, les modèles à noyaux ont été peu utilisés pour l'inférence de réseaux de régulation génique. en effet, ces méthodes fournissent en général des modèles difficiles a interpréter. dans cette thèse, nous avons développé deux façons d'obtenir des méthodes à noyaux interprétables. dans un premier temps, d'un point de vue théorique, nous montrons que les méthodes à noyaux permettent d'estimer, a partir d'un ensemble d'apprentissage, une fonction de transition et ses dérivées partielles de façon consistante. ces estimations de dérivées partielles permettent, sur des exemples réalistes, de mieux identifier le réseau de régulation génique que des méthodes standards. dans un deuxième temps, nous développons une méthode à noyau interprétable grâce à l'apprentissage à noyaux multiples. ce modèle fournit des résultats du niveau de l'état de l'art sur des réseaux réels et des réseaux simulés réalistes. New technologies in molecular biology, in particular dna microarrays, have greatly increased the quantity of available data. in this context, methods from mathematics and computer science have been actively developed to extract information from large datasets. in particular, the problem of gene regulatory network inference has been tackled using many different mathematical and statistical models, from the most basic ones (correlation, boolean or linear models) to the most elaborate (regression trees, bayesian models with latent variables). despite their qualities when applied to similar problems, kernel methods have scarcely been used for gene network inference, because of their lack of interpretability. in this thesis, two approaches are developed to obtain interpretable kernel methods. firstly, from a theoretical point of view, some kernel methods are shown to consistently estimate a transition function and its partial derivatives from a learning dataset. these estimations of partial derivatives allow to better infer the gene regulatory network than previous methods on realistic gene regulatory networks. secondly, an interpretable kernel methods through multiple kernel learning is presented. this method, called lockni, provides state-of-the-art results on real and realistically simulated datasets. Electronic Thesis or Dissertation Text StillImage en http://www.theses.fr/2014EVRY0058/document Fouchet, Arnaud 2014-01-10 Evry-Val d'Essonne Delosme, Jean-Marc Alché-Buc, Florence d'
collection NDLTD
language en
sources NDLTD
topic Noyaux multiples
Dérivées partielles

spellingShingle Noyaux multiples
Dérivées partielles

Fouchet, Arnaud
Kernel methods for gene regulatory network inference
description De nouvelles technologies, notamment les puces à adn, multiplient la quantité de données disponibles pour la biologie moléculaire. dans ce contexte, des méthodes informatiques et mathématiques sont activement développées pour extraire le plus d'information d'un grand nombre de données. en particulier, le problème d'inférence de réseaux de régulation génique a été abordé au moyen de multiples modèles mathématiques et statistiques, des plus basiques (corrélation, modèle booléen ou linéaire) aux plus sophistiqués (arbre de régression, modèles bayésiens avec variables cachées). malgré leurs qualités pour des problèmes similaires, les modèles à noyaux ont été peu utilisés pour l'inférence de réseaux de régulation génique. en effet, ces méthodes fournissent en général des modèles difficiles a interpréter. dans cette thèse, nous avons développé deux façons d'obtenir des méthodes à noyaux interprétables. dans un premier temps, d'un point de vue théorique, nous montrons que les méthodes à noyaux permettent d'estimer, a partir d'un ensemble d'apprentissage, une fonction de transition et ses dérivées partielles de façon consistante. ces estimations de dérivées partielles permettent, sur des exemples réalistes, de mieux identifier le réseau de régulation génique que des méthodes standards. dans un deuxième temps, nous développons une méthode à noyau interprétable grâce à l'apprentissage à noyaux multiples. ce modèle fournit des résultats du niveau de l'état de l'art sur des réseaux réels et des réseaux simulés réalistes. === New technologies in molecular biology, in particular dna microarrays, have greatly increased the quantity of available data. in this context, methods from mathematics and computer science have been actively developed to extract information from large datasets. in particular, the problem of gene regulatory network inference has been tackled using many different mathematical and statistical models, from the most basic ones (correlation, boolean or linear models) to the most elaborate (regression trees, bayesian models with latent variables). despite their qualities when applied to similar problems, kernel methods have scarcely been used for gene network inference, because of their lack of interpretability. in this thesis, two approaches are developed to obtain interpretable kernel methods. firstly, from a theoretical point of view, some kernel methods are shown to consistently estimate a transition function and its partial derivatives from a learning dataset. these estimations of partial derivatives allow to better infer the gene regulatory network than previous methods on realistic gene regulatory networks. secondly, an interpretable kernel methods through multiple kernel learning is presented. this method, called lockni, provides state-of-the-art results on real and realistically simulated datasets.
author2 Evry-Val d'Essonne
author_facet Evry-Val d'Essonne
Fouchet, Arnaud
author Fouchet, Arnaud
author_sort Fouchet, Arnaud
title Kernel methods for gene regulatory network inference
title_short Kernel methods for gene regulatory network inference
title_full Kernel methods for gene regulatory network inference
title_fullStr Kernel methods for gene regulatory network inference
title_full_unstemmed Kernel methods for gene regulatory network inference
title_sort kernel methods for gene regulatory network inference
publishDate 2014
url http://www.theses.fr/2014EVRY0058/document
work_keys_str_mv AT fouchetarnaud kernelmethodsforgeneregulatorynetworkinference
AT fouchetarnaud methodesanoyauxscalairespourlinferencedereseauxderegulationsgeniques
_version_ 1719019040272285696