Summary: | En France, 23 000 tonnes de graphites irradiés générés par le démantèlement des réacteurs nucléaires de première génération Uranium Naturel-Graphite-Gaz (UNGG) sont en attente d'une solution de gestion à long terme. Cette thèse porte sur le comportement du tritium, l'un des principaux contributeurs à l'inventaire radiologique des graphites à l'arrêt des réacteurs. Afin d'anticiper des rejets de tritium lors du démantèlement ou de la gestion des déchets, il est indispensable d'obtenir des données sur sa migration, sa localisation et son inventaire. Notre étude repose sur la simulation du tritium par implantation de l'ordre de 3 % at. de deutérium jusqu'à environ 3 μm dans un graphite nucléaire vierge. Celui-ci a ensuite subi des recuits jusqu'à 300 h et 1300 ° C sous atmosphère inerte, gaz caloporteur UNGG et gaz humide, dans le but de reproduire des conditions proches de celles rencontrées en réacteur et lors des opérations de gestion des déchets. Les profils et la répartition spatiale du deutérium ont été analysés via la réaction nucléaire 2H(3He,p)4He. Les principaux résultats montrent un relâchement thermique du deutérium se produisant selon trois régimes contrôlés par le dépiégeage de sites superficiels ou interstitiels. L'extrapolation des données au cas du tritium tend à montrer que son relâchement thermique en réacteur pourrait avoir été inférieur à 30 % et localisé à proximité des surfaces libres du graphite. L'essentiel de l'inventaire en tritium à l'arrêt des réacteurs serait retenu en profondeur dans les graphites irradiés, dont la décontamination nécessiterait alors des températures supérieures à 1300 °C, et serait plus efficace sous gaz inerte que sous gaz humide === In France, 23 000 t of irradiated graphite that will be generated by the decommissioning of the first generation Uranium Naturel-Graphite-Gaz (UNGG) nuclear reactors are waiting for a long term management solution. This work focuses on the behavior of tritium, which is one of the main contributors to the radiological inventory of graphite waste after reactor shutdown. In order to anticipate tritium release during dismantling or waste management, it is mandatory to collect data on its migration, location and inventory. Our study is based on the simulation of tritium by implantation of approximately 3 at. % of deuterium up to around 3 μm in a virgin nuclear graphite. This material was then annealed up to 300 h and 1300 °C in inert atmosphere, UNGG coolant gas and humid gas, aiming to reproduce thermal conditions close to those encountered in reactor and during waste management operations. The deuterium profiles and spatial distribution were analyzed using the nuclear reaction 2H(3He,p)4He. The main results evidence a thermal release of implanted deuterium occurring essentially through three regimes controlled by the detrapping of atomic deuterium located in superficial or interstitial sites. The extrapolation of our data to tritium suggests that its purely thermal release during reactor operations may have been lower than 30 % and would be located close to the graphite free surfaces. Consequently, most of the tritium inventory after reactor shutdown could be trapped deeply within the irradiated graphite structure. Decontamination of graphite waste should then require temperatures higher than 1300°C, and would be more efficient in dry inert gas than in humid gas
|