Physics of the thermal behavior of photovoltaic devices

Cette thèse porte sur l’étude du comportement thermique des systèmes photovoltaïques (PV). La première partie de la thèse rassemble et étend l’état de l’art sur la dépendance en température des rendements de conversion PV. L’analyse détaille l’ensemble des phénomènes physiques mis en jeu afin d’amél...

Full description

Bibliographic Details
Main Author: Dupré, Olivier
Other Authors: Lyon, INSA
Language:en
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015ISAL0089/document
id ndltd-theses.fr-2015ISAL0089
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Energétique
Energie
Thermique
Photovoltaique
Energie photovoltaïque
Température
Physique
Chaleur
Optimisation
Energetic
Energy
Photovoltaic
Photovoltaic Energy
Temperature
Physics
Heat
Optimization
621.470 72
spellingShingle Energétique
Energie
Thermique
Photovoltaique
Energie photovoltaïque
Température
Physique
Chaleur
Optimisation
Energetic
Energy
Photovoltaic
Photovoltaic Energy
Temperature
Physics
Heat
Optimization
621.470 72
Dupré, Olivier
Physics of the thermal behavior of photovoltaic devices
description Cette thèse porte sur l’étude du comportement thermique des systèmes photovoltaïques (PV). La première partie de la thèse rassemble et étend l’état de l’art sur la dépendance en température des rendements de conversion PV. L’analyse détaille l’ensemble des phénomènes physiques mis en jeu afin d’améliorer la compréhension des coefficients de température des différentes technologies de cellules PV. La seconde partie de la thèse recense les travaux de recherches effectués pour mitiger l’impact négatif de la température sur les performances des systèmes PV et propose une approche originale qui consiste à prendre en compte les conditions de fonctionnement du système dans le processus d’optimisation de ses caractéristiques. Afin de réaliser de telles optimisations, un modèle thermique complet et général pour les systèmes de conversion photovoltaïque est développé. Enfin, des applications à des systèmes photovoltaïque et thermophotovoltaïque démontrent la pertinence de l'approche proposée. === This Ph.D. thesis manuscript reports on a study about the physics of the thermal behavior of photovoltaic (PV) systems. While it is long known that the conversion efficiency of PV devices deteriorates when their temperature increases, a detailed analysis of all the mechanisms involved was not available to date in the literature. Part I of this manuscript gathers and extends the existing works on the topic in order to offer a comprehensive view of the physics involved in the temperature sensitivities of PV systems. First, temperature coefficients, which quantify the temperature dependences, are analyzed in the radiative limit (which is the fundamental limit for PV conversion). Then, the additional loss mechanisms of real PV devices are introduced and their impacts on the temperature coefficients are assessed. The existing theoretical expressions of the temperature coefficients of important solar cell parameters (namely open-circuit voltage, short-circuit current and fill factor) are reviewed. A new formulation of the temperature coefficient of the open-circuit voltage that incorporates the concept of External Radiative Efficiency (ERE) is proposed. The theoretical expressions are compared to experimental results on crystalline silicon cells from measurements made at the University of New South Wales (UNSW, Australia) and from the literature. Using the understanding of the relation between the temperature coefficients and device physics, the special cases of silicon heterojunction cells and cells made from compensated silicon are examined. Because temperature has a critical impact on the performances of PV devices, several studies aimed on the one hand at predicting the temperature of PV modules from their operating conditions and on the other hand at designing inexpensive cooling solutions. The goal of Part II of this manuscript is to propose an original approach to minimize the temperature-induced losses in PV systems. The idea is to include the operating conditions in the optimization of the system parameters in order to maximize the power produced in these conditions rather than in the Standard Test Conditions (STC). These original optimizations are based on a comprehensive thermal model of PV cells that captures all of the physical mechanisms involved in the generation of heat within the cell. Following the presentation of this thermal model, several examples of global optimization (i.e. a thermal criterion is added to the usual optical and electrical ones) are presented. Some of these examples apply to standard solar cells while others demonstrate that this kind of optimization can be applied to other PV systems such as thermophotovoltaic (TPV) converters (solar or near-field TPV). The recent trend of the PV industry towards the creation of products specifically adapted to a given use suggests that these original optimizations that take into account the system operating conditions could be implemented in the near future.
author2 Lyon, INSA
author_facet Lyon, INSA
Dupré, Olivier
author Dupré, Olivier
author_sort Dupré, Olivier
title Physics of the thermal behavior of photovoltaic devices
title_short Physics of the thermal behavior of photovoltaic devices
title_full Physics of the thermal behavior of photovoltaic devices
title_fullStr Physics of the thermal behavior of photovoltaic devices
title_full_unstemmed Physics of the thermal behavior of photovoltaic devices
title_sort physics of the thermal behavior of photovoltaic devices
publishDate 2015
url http://www.theses.fr/2015ISAL0089/document
work_keys_str_mv AT dupreolivier physicsofthethermalbehaviorofphotovoltaicdevices
AT dupreolivier physiqueducomportementthermiquedessystemesphotovoltaiques
_version_ 1718617366985703424
spelling ndltd-theses.fr-2015ISAL00892018-03-28T05:03:16Z Physics of the thermal behavior of photovoltaic devices Physique du comportement thermique des systèmes photovoltaïques Energétique Energie Thermique Photovoltaique Energie photovoltaïque Température Physique Chaleur Optimisation Energetic Energy Photovoltaic Photovoltaic Energy Temperature Physics Heat Optimization 621.470 72 Cette thèse porte sur l’étude du comportement thermique des systèmes photovoltaïques (PV). La première partie de la thèse rassemble et étend l’état de l’art sur la dépendance en température des rendements de conversion PV. L’analyse détaille l’ensemble des phénomènes physiques mis en jeu afin d’améliorer la compréhension des coefficients de température des différentes technologies de cellules PV. La seconde partie de la thèse recense les travaux de recherches effectués pour mitiger l’impact négatif de la température sur les performances des systèmes PV et propose une approche originale qui consiste à prendre en compte les conditions de fonctionnement du système dans le processus d’optimisation de ses caractéristiques. Afin de réaliser de telles optimisations, un modèle thermique complet et général pour les systèmes de conversion photovoltaïque est développé. Enfin, des applications à des systèmes photovoltaïque et thermophotovoltaïque démontrent la pertinence de l'approche proposée. This Ph.D. thesis manuscript reports on a study about the physics of the thermal behavior of photovoltaic (PV) systems. While it is long known that the conversion efficiency of PV devices deteriorates when their temperature increases, a detailed analysis of all the mechanisms involved was not available to date in the literature. Part I of this manuscript gathers and extends the existing works on the topic in order to offer a comprehensive view of the physics involved in the temperature sensitivities of PV systems. First, temperature coefficients, which quantify the temperature dependences, are analyzed in the radiative limit (which is the fundamental limit for PV conversion). Then, the additional loss mechanisms of real PV devices are introduced and their impacts on the temperature coefficients are assessed. The existing theoretical expressions of the temperature coefficients of important solar cell parameters (namely open-circuit voltage, short-circuit current and fill factor) are reviewed. A new formulation of the temperature coefficient of the open-circuit voltage that incorporates the concept of External Radiative Efficiency (ERE) is proposed. The theoretical expressions are compared to experimental results on crystalline silicon cells from measurements made at the University of New South Wales (UNSW, Australia) and from the literature. Using the understanding of the relation between the temperature coefficients and device physics, the special cases of silicon heterojunction cells and cells made from compensated silicon are examined. Because temperature has a critical impact on the performances of PV devices, several studies aimed on the one hand at predicting the temperature of PV modules from their operating conditions and on the other hand at designing inexpensive cooling solutions. The goal of Part II of this manuscript is to propose an original approach to minimize the temperature-induced losses in PV systems. The idea is to include the operating conditions in the optimization of the system parameters in order to maximize the power produced in these conditions rather than in the Standard Test Conditions (STC). These original optimizations are based on a comprehensive thermal model of PV cells that captures all of the physical mechanisms involved in the generation of heat within the cell. Following the presentation of this thermal model, several examples of global optimization (i.e. a thermal criterion is added to the usual optical and electrical ones) are presented. Some of these examples apply to standard solar cells while others demonstrate that this kind of optimization can be applied to other PV systems such as thermophotovoltaic (TPV) converters (solar or near-field TPV). The recent trend of the PV industry towards the creation of products specifically adapted to a given use suggests that these original optimizations that take into account the system operating conditions could be implemented in the near future. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015ISAL0089/document Dupré, Olivier 2015-10-16 Lyon, INSA Green, Martin A. Vaillon, Rodolphe