Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space

Cette thèse de doctorat introduit un modèle et un algorithme six-dimensions pour la reconstruction des orientations cristallines locales dans les matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues avec un rayonnement synchrotron (faisceau parallèle et monochromatique),...

Full description

Bibliographic Details
Main Author: Vigano, Nicola Roberto
Other Authors: Lyon, INSA
Language:en
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015ISAL0095/document
id ndltd-theses.fr-2015ISAL0095
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Matériau cristallin
Matériau granulaire
Orientation des grains
Imagerie de l'orientation
Tomographie par contraste de diffraction
Variation totale
Minimisation fonctionnelle
Caractérisation non destructive
Crystalline material
Granular material
Grains orientation
Orientation imaging
Diffractrion Contrast Tomography
Total variation
Functional minimization
Non Destructive Characterisation
620.112 720 72
spellingShingle Matériau cristallin
Matériau granulaire
Orientation des grains
Imagerie de l'orientation
Tomographie par contraste de diffraction
Variation totale
Minimisation fonctionnelle
Caractérisation non destructive
Crystalline material
Granular material
Grains orientation
Orientation imaging
Diffractrion Contrast Tomography
Total variation
Functional minimization
Non Destructive Characterisation
620.112 720 72
Vigano, Nicola Roberto
Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
description Cette thèse de doctorat introduit un modèle et un algorithme six-dimensions pour la reconstruction des orientations cristallines locales dans les matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues avec un rayonnement synchrotron (faisceau parallèle et monochromatique), mais il est également possible d’envisager des extensions aux instruments et sources de laboratoire (polychromatique et divergent). Le travail présenté est principalement une extension de la technique connue sous le nom de “Diffraction Contrast Tomography” (DCT) qui permet la reconstruction de la forme et de l’orientation cristalline des grains dans des matériaux polycristallins (avec certaines restrictions concernant la taille et le nombre total de grains ainsi que la mosaicité intragranulaire). === This Ph.D. thesis is about the development and formalization of a six-dimensional tomography method, for the reconstruction of local orientation in poly-crystalline materials. This method is based on a technique known as diffraction contract tomography (DCT), mainly used in synchrotrons, with a monochromatic and parallel high energy X-ray beam. DCT exists since over a decade now, but it was always employed to analyze undeformed or nearly undeformed materials, described by “grains” with a certain average orientation. Because an orientation can be parametrized by the used of only three num- bers, the local orientation in the grains is modelled by a six-dimensional space X6 = R3 ⊗ O3, that is the outer product between a three-dimensional real- space and another three-dimensional orientation-space. This means that for each point of the real-space, there could be a full three-dimensional orientation- space, which however in practice is restricted to a smaller region of interest called “local orientation-space”. The reconstruction problem is then formulated as a global minimisation prob- lem, where the reconstruction of a single grain is the solution that minimizes a functional. There can be different choices for the functionals to use, and they depend on the type of reconstructions one is looking for, and on the type of a priori knowledge is available. All the functionals used include a data fidelity term which ensures that the reconstruction is consistent with the measured diffraction data, and then an additional regularization term is added, like the l1-norm minimization of the solution vector, that tries to limit the number of orientations per real-space voxel, or a Total Variation operator over the sum of the orientation part of the six-dimensional voxels, in order to enforce the homogeneity of the grain volume. When first published, the results on synthetic data from the third chapter high- lighted some key features of the proposed framework, and showed that it was in principle possible to extend DCT to the reconstruction of moderately de- formed materials, but it was unclear whether it could work in practice. The following chapters instead confirm that the proposed framework is viable for reconstructing moderately deformed materials, and that in conjunction with other techniques, it could also overcome the limitations imposed by the grain indexing, and be applied to more challenging textured materials.
author2 Lyon, INSA
author_facet Lyon, INSA
Vigano, Nicola Roberto
author Vigano, Nicola Roberto
author_sort Vigano, Nicola Roberto
title Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
title_short Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
title_full Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
title_fullStr Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
title_full_unstemmed Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
title_sort full-field x-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space
publishDate 2015
url http://www.theses.fr/2015ISAL0095/document
work_keys_str_mv AT viganonicolaroberto fullfieldxrayorientationimagingusingconvexoptimizationandadiscreterepresentationofsixdimensionalpositionorientationspace
AT viganonicolaroberto imageriedelorientationenutilisantlesrayonsxetilluminationcompletegracealaminimisationdunfonctionnelleconvexeetaunerepresentationechantillonnedelespacesisdimensionnelpositionorientation
_version_ 1719250722727395328
spelling ndltd-theses.fr-2015ISAL00952019-09-14T03:30:32Z Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space Imagerie de l'orientation en utilisant les rayons-X et illumination complète, grâce à la minimisation d'un fonctionnelle convexe et à une représentation échantillonné de l'espace sis-dimensionnel position-orientation Matériau cristallin Matériau granulaire Orientation des grains Imagerie de l'orientation Tomographie par contraste de diffraction Variation totale Minimisation fonctionnelle Caractérisation non destructive Crystalline material Granular material Grains orientation Orientation imaging Diffractrion Contrast Tomography Total variation Functional minimization Non Destructive Characterisation 620.112 720 72 Cette thèse de doctorat introduit un modèle et un algorithme six-dimensions pour la reconstruction des orientations cristallines locales dans les matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues avec un rayonnement synchrotron (faisceau parallèle et monochromatique), mais il est également possible d’envisager des extensions aux instruments et sources de laboratoire (polychromatique et divergent). Le travail présenté est principalement une extension de la technique connue sous le nom de “Diffraction Contrast Tomography” (DCT) qui permet la reconstruction de la forme et de l’orientation cristalline des grains dans des matériaux polycristallins (avec certaines restrictions concernant la taille et le nombre total de grains ainsi que la mosaicité intragranulaire). This Ph.D. thesis is about the development and formalization of a six-dimensional tomography method, for the reconstruction of local orientation in poly-crystalline materials. This method is based on a technique known as diffraction contract tomography (DCT), mainly used in synchrotrons, with a monochromatic and parallel high energy X-ray beam. DCT exists since over a decade now, but it was always employed to analyze undeformed or nearly undeformed materials, described by “grains” with a certain average orientation. Because an orientation can be parametrized by the used of only three num- bers, the local orientation in the grains is modelled by a six-dimensional space X6 = R3 ⊗ O3, that is the outer product between a three-dimensional real- space and another three-dimensional orientation-space. This means that for each point of the real-space, there could be a full three-dimensional orientation- space, which however in practice is restricted to a smaller region of interest called “local orientation-space”. The reconstruction problem is then formulated as a global minimisation prob- lem, where the reconstruction of a single grain is the solution that minimizes a functional. There can be different choices for the functionals to use, and they depend on the type of reconstructions one is looking for, and on the type of a priori knowledge is available. All the functionals used include a data fidelity term which ensures that the reconstruction is consistent with the measured diffraction data, and then an additional regularization term is added, like the l1-norm minimization of the solution vector, that tries to limit the number of orientations per real-space voxel, or a Total Variation operator over the sum of the orientation part of the six-dimensional voxels, in order to enforce the homogeneity of the grain volume. When first published, the results on synthetic data from the third chapter high- lighted some key features of the proposed framework, and showed that it was in principle possible to extend DCT to the reconstruction of moderately de- formed materials, but it was unclear whether it could work in practice. The following chapters instead confirm that the proposed framework is viable for reconstructing moderately deformed materials, and that in conjunction with other techniques, it could also overcome the limitations imposed by the grain indexing, and be applied to more challenging textured materials. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015ISAL0095/document Vigano, Nicola Roberto 2015-11-02 Lyon, INSA Université de Antwerp Ludwig, Wolfgang Sijbers, Jan