Implementation of harmonic balance reduce model order equation

MOR (Model Order Reduction) est devenu un domaine très répondu dans la recherche grâce à l'intérêt qu'il peut apporter dans la réduction des systèmes, ce qui permet d'économiser du temps, de la mémoire et le coût de CPU pour les outils de CAO. Ce domaine contient principalement deux b...

Full description

Bibliographic Details
Main Author: Hijazi, Abdallah
Other Authors: Limoges
Language:en
Published: 2015
Subjects:
MOR
Online Access:http://www.theses.fr/2015LIMO0139/document
id ndltd-theses.fr-2015LIMO0139
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Réduction de circuit
Equilibrage harmonique
Projection de Krylov
Circuit non-linéaires
MOR
Circuit reduction
Harmonic balance
Krylov-projection
Nonlinear circuits
MOR
519.7
spellingShingle Réduction de circuit
Equilibrage harmonique
Projection de Krylov
Circuit non-linéaires
MOR
Circuit reduction
Harmonic balance
Krylov-projection
Nonlinear circuits
MOR
519.7
Hijazi, Abdallah
Implementation of harmonic balance reduce model order equation
description MOR (Model Order Reduction) est devenu un domaine très répondu dans la recherche grâce à l'intérêt qu'il peut apporter dans la réduction des systèmes, ce qui permet d'économiser du temps, de la mémoire et le coût de CPU pour les outils de CAO. Ce domaine contient principalement deux branches: linéaires et non linéaires. MOR linéaire est un domaine mature avec des techniques numériques bien établie et bien connus dans la domaine de la recherche, par contre le domaine non linéaire reste vague, et jusqu'à présent il n'a pas montré des bons résultats dans la simulation des circuits électriques. La recherche est toujours en cours dans ce domaine, en raison de l’intérêt qu'il peut fournir aux simulateurs contemporains, surtout avec la croissance des puces électroniques en termes de taille et de complexité, et les exigences industrielles vers l'intégration des systèmes sur la même puce.Une contribution significative, pour résoudre le problème de Harmonic Balance (Equilibrage Harmonique) en utilisant la technique MOR, a été proposé en 2002 par E. Gad et M. Nakhla. La technique a montré une réduction substantielle de la dimension du système, tout en préservant, en sortie, la précision de l'analyse en régime permanent. Cette méthode de MOR utilise la technique de projection par l'intermédiaire de Krylov, et il préserve la passivité du système. Cependant, il souffre de quelques limitations importantes dans la construction de la matrice “pre-conditioner“ qui permettrait de réduire le système. La limitation principale est la nécessité d'une factorisation explicite comme une suite numérique de l'équation des dispositifs non linéaires . cette limitation rend la technique difficile à appliquer dans les conditions générales d'un simulateur. Cette thèse examinera les aspects non linéaires du modèle de réduction pour les équations de bilan harmoniques, et il étudiera les solutions pour surmonter les limitations mentionnées ci-dessus, en particulier en utilisant des approches de dérivateur numériques. === MOR recently became a well-known research field, due to the interest that it shows in reducing the system, which saves time, memory, and CPU cost for CAD tools. This field contains two branches, linear and nonlinear MOR, the linear MOR is a mature domain with well-established theory and numerical techniques. Meanwhile, nonlinear MOR domain is still stammering, and so far it didn’t show good and successful results in electrical circuit simulation. Some improvements however started to pop-up recently, and research is still going on this field because of the help that it can give to the contemporary simulators, especially with the growth of the electronic chips in terms of size and complexity due to industrial demands towards integrating systems on the same chip. A significant contribution in the MOR technique of HB solution has been proposed a decade ago by E. Gad and M. Nakhla. The technique has shown to provide a substantial system dimension reduction while preserving the precision of the output in steady state analysis. This MOR method uses the technique of projection via Krylov, and it preserves the passivity of the system. However, it suffers a number of important limitations in the construction of the pre-conditioner matrix which is ought to reduce the system. The main limitation is the necessity for explicit factorization as a power series of the equation of the nonlinear devices. This makes the technique difficult to apply in general purpose simulator conditions. This thesis will review the aspects of the nonlinear model order reduction technique for harmonic balance equations, and it will study solutions to overcome the above mentioned limitations, in particular using numerical differentiation approaches.
author2 Limoges
author_facet Limoges
Hijazi, Abdallah
author Hijazi, Abdallah
author_sort Hijazi, Abdallah
title Implementation of harmonic balance reduce model order equation
title_short Implementation of harmonic balance reduce model order equation
title_full Implementation of harmonic balance reduce model order equation
title_fullStr Implementation of harmonic balance reduce model order equation
title_full_unstemmed Implementation of harmonic balance reduce model order equation
title_sort implementation of harmonic balance reduce model order equation
publishDate 2015
url http://www.theses.fr/2015LIMO0139/document
work_keys_str_mv AT hijaziabdallah implementationofharmonicbalancereducemodelorderequation
AT hijaziabdallah techniquesdereductiondordredesmodelespourlamiseenœuvredelamethodedelequilibrageharmonique
_version_ 1718640494174535680
spelling ndltd-theses.fr-2015LIMO01392018-05-18T04:23:02Z Implementation of harmonic balance reduce model order equation Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique Réduction de circuit Equilibrage harmonique Projection de Krylov Circuit non-linéaires MOR Circuit reduction Harmonic balance Krylov-projection Nonlinear circuits MOR 519.7 MOR (Model Order Reduction) est devenu un domaine très répondu dans la recherche grâce à l'intérêt qu'il peut apporter dans la réduction des systèmes, ce qui permet d'économiser du temps, de la mémoire et le coût de CPU pour les outils de CAO. Ce domaine contient principalement deux branches: linéaires et non linéaires. MOR linéaire est un domaine mature avec des techniques numériques bien établie et bien connus dans la domaine de la recherche, par contre le domaine non linéaire reste vague, et jusqu'à présent il n'a pas montré des bons résultats dans la simulation des circuits électriques. La recherche est toujours en cours dans ce domaine, en raison de l’intérêt qu'il peut fournir aux simulateurs contemporains, surtout avec la croissance des puces électroniques en termes de taille et de complexité, et les exigences industrielles vers l'intégration des systèmes sur la même puce.Une contribution significative, pour résoudre le problème de Harmonic Balance (Equilibrage Harmonique) en utilisant la technique MOR, a été proposé en 2002 par E. Gad et M. Nakhla. La technique a montré une réduction substantielle de la dimension du système, tout en préservant, en sortie, la précision de l'analyse en régime permanent. Cette méthode de MOR utilise la technique de projection par l'intermédiaire de Krylov, et il préserve la passivité du système. Cependant, il souffre de quelques limitations importantes dans la construction de la matrice “pre-conditioner“ qui permettrait de réduire le système. La limitation principale est la nécessité d'une factorisation explicite comme une suite numérique de l'équation des dispositifs non linéaires . cette limitation rend la technique difficile à appliquer dans les conditions générales d'un simulateur. Cette thèse examinera les aspects non linéaires du modèle de réduction pour les équations de bilan harmoniques, et il étudiera les solutions pour surmonter les limitations mentionnées ci-dessus, en particulier en utilisant des approches de dérivateur numériques. MOR recently became a well-known research field, due to the interest that it shows in reducing the system, which saves time, memory, and CPU cost for CAD tools. This field contains two branches, linear and nonlinear MOR, the linear MOR is a mature domain with well-established theory and numerical techniques. Meanwhile, nonlinear MOR domain is still stammering, and so far it didn’t show good and successful results in electrical circuit simulation. Some improvements however started to pop-up recently, and research is still going on this field because of the help that it can give to the contemporary simulators, especially with the growth of the electronic chips in terms of size and complexity due to industrial demands towards integrating systems on the same chip. A significant contribution in the MOR technique of HB solution has been proposed a decade ago by E. Gad and M. Nakhla. The technique has shown to provide a substantial system dimension reduction while preserving the precision of the output in steady state analysis. This MOR method uses the technique of projection via Krylov, and it preserves the passivity of the system. However, it suffers a number of important limitations in the construction of the pre-conditioner matrix which is ought to reduce the system. The main limitation is the necessity for explicit factorization as a power series of the equation of the nonlinear devices. This makes the technique difficult to apply in general purpose simulator conditions. This thesis will review the aspects of the nonlinear model order reduction technique for harmonic balance equations, and it will study solutions to overcome the above mentioned limitations, in particular using numerical differentiation approaches. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015LIMO0139/document Hijazi, Abdallah 2015-12-21 Limoges Ngoya, Edouard