Galois representations and Mumford-Tate groups attached to abelian varieties

Soient $K$ un corps de nombres et $A$ une variété abélienne sur $K$ dont nous notons $g$ la dimension. Pour tout premier $ell$, le module de Tate $ell$-adique de $A$ nous fournit une représentation $ell$-adique du groupe de Galois absolu de $K$, et c'est à l'image de ces représentations ga...

Full description

Bibliographic Details
Main Author: Lombardo, Davide
Other Authors: Université Paris-Saclay (ComUE)
Language:fr
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015SACLS196/document
id ndltd-theses.fr-2015SACLS196
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Répresentations galoisiennes
Variétés abéliennes
Conjecture de Mumford-Tate
Galois representations
Abelian varieties
Mumford-Tate conjecture

spellingShingle Répresentations galoisiennes
Variétés abéliennes
Conjecture de Mumford-Tate
Galois representations
Abelian varieties
Mumford-Tate conjecture

Lombardo, Davide
Galois representations and Mumford-Tate groups attached to abelian varieties
description Soient $K$ un corps de nombres et $A$ une variété abélienne sur $K$ dont nous notons $g$ la dimension. Pour tout premier $ell$, le module de Tate $ell$-adique de $A$ nous fournit une représentation $ell$-adique du groupe de Galois absolu de $K$, et c'est à l'image de ces représentations galoisiennes que l'on s'intéresse dans cette thèse.Pour de nombreuses classes de variétés abéliennes on possède une description de ces images à une erreur finie près : le premier but de ce travail est de quantifier explicitement cette erreur dans plusieurs cas différents. On parvient à résoudre complètement le problème pour une courbe elliptique sans multiplication complexe, ou plus généralement pour un produit de telles courbes elliptiques, et pour toute variété abélienne géométriquement simple admettant multiplication complexe. Pour d'autres classes de variétés abéliennes $A/K$ on obtient seulement une description de l'image de Galois pour tout premier $ell$ plus grand qu'une certaine borne (que l'on calcule explicitement, et qui est polynomiale en le degré de $K$ et en la hauteur de Faltings de $A$) : nous prouvons de tels résultats pour toute surface abélienne semistable et géométriquement simple et pour les variétés dites "de type $operatorname{GL}_2$''. On montre également un résultat semblable, mais un peu affaibli, pour de nombreuses variétés abéliennes de dimension impaire dont l'anneau des endomorphismes est réduit à $mathbb{Z}$.On s'intéresse ensuite à l'action de Galois sur des variétés abéliennes non simples, et on donne des conditions suffisantes pour que les représentations galoisiennes qui leur sont associées se décomposent elles-mêmes en produit. Finalement on étudie l'intersection entre les extensions cyclotomiques d'un corps de nombres $K$ et les corps engendrés par les points de torsion d'une variété abélienne sur $K$, et on établit des propriétés d'uniformité des degrés de ces intersections. === Let $K$ be a number field and $A$ be a $g$-dimensional abelian variety over $K$. For every prime $ell$, the $ell$-adic Tate module of $A$ gives rise to an $ell$-adic representation of the absolute Galois group of $K$; in this thesis we set out to study the images of the Galois representations arising in this way.For various classes of abelian varieties a description of these images is known up to finite error, and the first aim of this work is to explicitly quantify this error for a number of different cases. We provide a complete solution for the case of elliptic curves without complex multiplication (and more generally for products thereof) and for geometrically simple abelian varieties of CM type. For other classes of abelian varieties we can only describe the Galois image when the prime $ell$ is above a certain bound (which we compute explicitly in terms of $A$, and which is polynomial in $[K:mathbb{Q}]$ and in the Faltings height of $A$): we obtain such results for geometrically simple, semistable abelian surfaces and for "$operatorname{GL}_2$-type" varieties. We also prove similar (but slightly weaker) results for many abelian varieties of odd dimension with trivial endomorphism algebra.We then consider the Galois action on non-simple abelian varieties, and we give sufficient conditions for the associated Galois representations to decompose as a product.Finally, we investigate the structure of the intersection between the cyclotomic extensions of a number field $K$ and the fields generated by the torsion points of an abelian variety over $K$, proving a uniformity property for the degrees of such intersections.
author2 Université Paris-Saclay (ComUE)
author_facet Université Paris-Saclay (ComUE)
Lombardo, Davide
author Lombardo, Davide
author_sort Lombardo, Davide
title Galois representations and Mumford-Tate groups attached to abelian varieties
title_short Galois representations and Mumford-Tate groups attached to abelian varieties
title_full Galois representations and Mumford-Tate groups attached to abelian varieties
title_fullStr Galois representations and Mumford-Tate groups attached to abelian varieties
title_full_unstemmed Galois representations and Mumford-Tate groups attached to abelian varieties
title_sort galois representations and mumford-tate groups attached to abelian varieties
publishDate 2015
url http://www.theses.fr/2015SACLS196/document
work_keys_str_mv AT lombardodavide galoisrepresentationsandmumfordtategroupsattachedtoabelianvarieties
AT lombardodavide representationsgaloisiennesetgroupedemumfordtateassocieaunevarieteabelienne
_version_ 1719311748495835136
spelling ndltd-theses.fr-2015SACLS1962020-02-03T15:28:01Z Galois representations and Mumford-Tate groups attached to abelian varieties Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne Répresentations galoisiennes Variétés abéliennes Conjecture de Mumford-Tate Galois representations Abelian varieties Mumford-Tate conjecture Soient $K$ un corps de nombres et $A$ une variété abélienne sur $K$ dont nous notons $g$ la dimension. Pour tout premier $ell$, le module de Tate $ell$-adique de $A$ nous fournit une représentation $ell$-adique du groupe de Galois absolu de $K$, et c'est à l'image de ces représentations galoisiennes que l'on s'intéresse dans cette thèse.Pour de nombreuses classes de variétés abéliennes on possède une description de ces images à une erreur finie près : le premier but de ce travail est de quantifier explicitement cette erreur dans plusieurs cas différents. On parvient à résoudre complètement le problème pour une courbe elliptique sans multiplication complexe, ou plus généralement pour un produit de telles courbes elliptiques, et pour toute variété abélienne géométriquement simple admettant multiplication complexe. Pour d'autres classes de variétés abéliennes $A/K$ on obtient seulement une description de l'image de Galois pour tout premier $ell$ plus grand qu'une certaine borne (que l'on calcule explicitement, et qui est polynomiale en le degré de $K$ et en la hauteur de Faltings de $A$) : nous prouvons de tels résultats pour toute surface abélienne semistable et géométriquement simple et pour les variétés dites "de type $operatorname{GL}_2$''. On montre également un résultat semblable, mais un peu affaibli, pour de nombreuses variétés abéliennes de dimension impaire dont l'anneau des endomorphismes est réduit à $mathbb{Z}$.On s'intéresse ensuite à l'action de Galois sur des variétés abéliennes non simples, et on donne des conditions suffisantes pour que les représentations galoisiennes qui leur sont associées se décomposent elles-mêmes en produit. Finalement on étudie l'intersection entre les extensions cyclotomiques d'un corps de nombres $K$ et les corps engendrés par les points de torsion d'une variété abélienne sur $K$, et on établit des propriétés d'uniformité des degrés de ces intersections. Let $K$ be a number field and $A$ be a $g$-dimensional abelian variety over $K$. For every prime $ell$, the $ell$-adic Tate module of $A$ gives rise to an $ell$-adic representation of the absolute Galois group of $K$; in this thesis we set out to study the images of the Galois representations arising in this way.For various classes of abelian varieties a description of these images is known up to finite error, and the first aim of this work is to explicitly quantify this error for a number of different cases. We provide a complete solution for the case of elliptic curves without complex multiplication (and more generally for products thereof) and for geometrically simple abelian varieties of CM type. For other classes of abelian varieties we can only describe the Galois image when the prime $ell$ is above a certain bound (which we compute explicitly in terms of $A$, and which is polynomial in $[K:mathbb{Q}]$ and in the Faltings height of $A$): we obtain such results for geometrically simple, semistable abelian surfaces and for "$operatorname{GL}_2$-type" varieties. We also prove similar (but slightly weaker) results for many abelian varieties of odd dimension with trivial endomorphism algebra.We then consider the Galois action on non-simple abelian varieties, and we give sufficient conditions for the associated Galois representations to decompose as a product.Finally, we investigate the structure of the intersection between the cyclotomic extensions of a number field $K$ and the fields generated by the torsion points of an abelian variety over $K$, proving a uniformity property for the degrees of such intersections. Electronic Thesis or Dissertation Text Image StillImage fr http://www.theses.fr/2015SACLS196/document Lombardo, Davide 2015-12-10 Université Paris-Saclay (ComUE) Ratazzi, Nicolas