Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.

Si les régions cérébrales du langage ont étélargement explorées grâce à l’IRM fonctionnelle (IRMf) et la stimulation électrique directe (SED)peropératoire, leur connectivité reste encore incomplètement documentée. Il n’est pas seulement débattuquels faisceaux de SB contribuent au langage, mais égale...

Full description

Bibliographic Details
Main Author: Vassal, François
Other Authors: Clermont-Ferrand 1
Language:fr
Published: 2016
Subjects:
616
Online Access:http://www.theses.fr/2016CLF1MM12
id ndltd-theses.fr-2016CLF1MM12
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Imagerie par résonance magnétique fonctionnelle
Tumeurs cérébrales
Tractographie
Stimulation électrique peropératoire
Langage
Connectivité anatomique
Connectomique
Imagerie en tenseur de diffusion
Diffusion tensor imaging;
Tractography
Language;
Intraoperati stimulation mapping
Functional magnetic resonance imaging
Anatomical connectivity
Connectomics
Brain tumor
616
spellingShingle Imagerie par résonance magnétique fonctionnelle
Tumeurs cérébrales
Tractographie
Stimulation électrique peropératoire
Langage
Connectivité anatomique
Connectomique
Imagerie en tenseur de diffusion
Diffusion tensor imaging;
Tractography
Language;
Intraoperati stimulation mapping
Functional magnetic resonance imaging
Anatomical connectivity
Connectomics
Brain tumor
616
Vassal, François
Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
description Si les régions cérébrales du langage ont étélargement explorées grâce à l’IRM fonctionnelle (IRMf) et la stimulation électrique directe (SED)peropératoire, leur connectivité reste encore incomplètement documentée. Il n’est pas seulement débattuquels faisceaux de SB contribuent au langage, mais également quelle est leur anatomie précise et leur rôlefonctionnel spécifique. Une meilleure compréhension du connectome du langage est requise pourdiminuer la morbidité postopératoire en neurochirurgie et développer de nouveaux traitements cibléspour la rééducation des aphasies. Notre objectif était de cartographier structurellement etfonctionnellement, in vivo, la connectivité du langage. Dans une première étude préclinique portant sur 2Oadultes sains, nous avons combiné des informations structurelles axonales révélées par la tractographieavec des informations fonctionnelles corticales dérivées de l’IRMf (tâche de lecture compréhensive). Huitfaisceaux de SB ont été explorés —i.e. faisceau arqué, faisceau longitudinal supérieur, faisceau frontooccipitalinférieur, faisceau unciné, faisceau longitudinal inférieur, faisceau longitudinal moyen, faisceauoperculo-prémoteur, faisceau frontal transverse—, dont le rôle fonctionnel a été analysé en recherchantune connexion entre leurs terminaisons corticales et les activations IRMf. Les caractéristiquesanatomiques des faisceaux (i.e. volume, longueur, terminaisons corticales), leurs asymétries interhémisphériqueset leurs variations interindividuelles ont été colligées. Ce protocole a permis deconstruire le connectome du langage et d’étudier en détails son organisation structurelle macroscopique.Dans une seconde partie, ces données ont été transposées à la clinique pour le traitement chirurgical depatients souffrant de tumeurs cérébrales (gliomes) en régions du langage. Pendant la résection tumorale,des images de tractographie intégrées à un système de neuronavigation ont été systématiquementcombinées à la SED au cours d’un test de dénomination orale d’images. Ce protocole opératoire a permisd’optimiser les résultats chirurgicaux en termes de qualité d’exérèse et de préservation du langage, et aconstitué une opportunité unique d’étudier en temps réel les corrélations structure – fonction. Encouplant la localisation anatomique précise où chaque SED a été délivrée —obtenue grâce aux images detractographie naviguées— et la sémiologie des paraphasies induites par la SED —colligée par unorthophoniste présent au bloc opératoire—, nous avons déterminé le rôle spécifique de 5 faisceaux tantcortico-corticaux (faisceau arqué, faisceau fronto-occipital inférieur, faisceau frontal transverse) quecortico-sous-corticaux (fibres prémotrices orofaciales, faisceau fronto-striatal) dans différentes souscomposantesdu langage, i.e. traitement phonologique, traitement sémantique, contrôle moteur,planification articulatoire, contrôle exécutif/cognitif de la réponse verbale. Considérés de façon globale,nos résultats permettent d’envisager une meilleure compréhension de l’organisation anatomofonctionnelledes réseaux cérébraux du langage. Au-delà de l’intérêt scientifique, la possibilité deconstruire le connectome du langage spécifique à chaque individu ouvre la voie vers d’importantesapplications en neurochirurgie, dans une perspective de médecine personnalisée. Aujourd’hui, la chirurgiedes tumeurs cérébrales guidée par l’image. Demain, le développement de nouveaux traitements pour larééducation des aphasies, e.g. la déposition ciblée d’agents pharmacologiques, de cellules souches ou deneuromodulations, interagissant directement avec la connectivité résiduelle épargnée par la lésion. === The langage connectome is defined as the neuronal networks that subserve languagefunctions. Anatomically, it comprises specialized cortical areas and modulatory subcortical areas (i.e. deepgray nuclei and cerebellum), as well as their interconnections trough white matter (WM) fascicles.Although brain regions involved in language have been largely explored thanks to functional MRI (fMRI)and intraoprative electrical stimulation (IES), the underlying WM connectivity is still not mastered. It isnot only unknown which WM fascicles specifically contribute to language, but there is also much debateabout their precise anatomy and the functions they subserve during language processing. Betterunderstanding of the structural and functional organization of the language connectome is requisite toreduce postoperative morbidity in neurosurgery and develop targeted treatments for aphasiarehabilitation. Herein, our objective was to map structurally and functionally, in vivo, the subcorticalconnectivity of language. First, we conducted a preclinical study in 20 healthy subjects, combining DTItractography and fMRI (reading comprehension task) to yield connectivity associated with language. Weexplored 8 WM fascicles that have been proposed as putative candidates for language —i.e. arcuatefascicle, superior longitudinal fascicle, inferior fronto-occipital fascicle, uncinate fascicle, inferiorlongitudinal fascicle, middle longitudinal fascicle, operculopremotor fascicle, frontal aslant tract—, towhich we assigned functionality by tracking their connections to the fMRI-derived clusters. We generateda normative database of anatomical characteristics for each WM fascicle, such as volume, length, corticalterminations and their interhemispheric and interindividual variations. By using this construct, weprovided in explicit details the structural map of the language connectome. Second, this body ofknowledge was transposed to brain tumor surgery. Patients suffering of gliomas located close to languageregions were operated on under local anesthesia (i.e. awake surgery) in order to perform intraoperativelanguage mapping (object naming task). Essential language sites were localized through IES andanatomically characterized thanks to navigated tractography images. This intraoperative protocol allowedmaximum tumor resection while preserving language functions. Furthermore, it gave us a uniqueopportunity to perform reliable, real-time structure – function relationships, determining the role of 5WM fascicles (arcuate fascicle, inferior fronto-occipital fascicle, frontal aslant tract, orofacial premotorfibers, frontostriatal fascicle) in different subcomponents of language, i.e. phonological processing,semantic processing, articulatory planning, motor control and executive/cognitive control of verbalresponse. Globally considered, our results allow a better understanding of the anatomo-functionalorganization of the language network in the human brain. Beyond the scientific interest, the possibility toconstruct the individual (patient-specific) connectome paves the way for major applications inneurosurgery, in the perspective of personalized medicine. Today, the maximum safe resection of braintumors located in eloquent language areas, guided by navigated, multimodal images. Tomorrow, thedevelopment of new treatments for rehabilitation of post-stroke aphasia patients, such as the targeteddelivery of drugs, stem cells, or neuromodulation devices, fitting with the residual functional connectivityspared by the lesion.
author2 Clermont-Ferrand 1
author_facet Clermont-Ferrand 1
Vassal, François
author Vassal, François
author_sort Vassal, François
title Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
title_short Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
title_full Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
title_fullStr Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
title_full_unstemmed Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire.
title_sort le connectome du langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par imagerie tensorielle de diffusion, irm fonctionnelle et stimulation électrique peropératoire.
publishDate 2016
url http://www.theses.fr/2016CLF1MM12
work_keys_str_mv AT vassalfrancois leconnectomedulangagedanslecerveauhumainetudestructurelleetfoncionnelleentractographieparimagerietensorielledediffusionirmfonctionnelleetstimulationelectriqueperoperatoire
AT vassalfrancois thehumanbrainlanguageconnectomestructuralandfonctionalstudyusingdtitractographyfunctionalmriandintraoperativeelectricalstimulation
_version_ 1719251808162938880
spelling ndltd-theses.fr-2016CLF1MM122019-09-19T03:20:51Z Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire. The human brain language connectome : Structural and fonctional study using DTI tractography, functional MRI and intraoperative electrical stimulation Imagerie par résonance magnétique fonctionnelle Tumeurs cérébrales Tractographie Stimulation électrique peropératoire Langage Connectivité anatomique Connectomique Imagerie en tenseur de diffusion Diffusion tensor imaging; Tractography Language; Intraoperati stimulation mapping Functional magnetic resonance imaging Anatomical connectivity Connectomics Brain tumor 616 Si les régions cérébrales du langage ont étélargement explorées grâce à l’IRM fonctionnelle (IRMf) et la stimulation électrique directe (SED)peropératoire, leur connectivité reste encore incomplètement documentée. Il n’est pas seulement débattuquels faisceaux de SB contribuent au langage, mais également quelle est leur anatomie précise et leur rôlefonctionnel spécifique. Une meilleure compréhension du connectome du langage est requise pourdiminuer la morbidité postopératoire en neurochirurgie et développer de nouveaux traitements cibléspour la rééducation des aphasies. Notre objectif était de cartographier structurellement etfonctionnellement, in vivo, la connectivité du langage. Dans une première étude préclinique portant sur 2Oadultes sains, nous avons combiné des informations structurelles axonales révélées par la tractographieavec des informations fonctionnelles corticales dérivées de l’IRMf (tâche de lecture compréhensive). Huitfaisceaux de SB ont été explorés —i.e. faisceau arqué, faisceau longitudinal supérieur, faisceau frontooccipitalinférieur, faisceau unciné, faisceau longitudinal inférieur, faisceau longitudinal moyen, faisceauoperculo-prémoteur, faisceau frontal transverse—, dont le rôle fonctionnel a été analysé en recherchantune connexion entre leurs terminaisons corticales et les activations IRMf. Les caractéristiquesanatomiques des faisceaux (i.e. volume, longueur, terminaisons corticales), leurs asymétries interhémisphériqueset leurs variations interindividuelles ont été colligées. Ce protocole a permis deconstruire le connectome du langage et d’étudier en détails son organisation structurelle macroscopique.Dans une seconde partie, ces données ont été transposées à la clinique pour le traitement chirurgical depatients souffrant de tumeurs cérébrales (gliomes) en régions du langage. Pendant la résection tumorale,des images de tractographie intégrées à un système de neuronavigation ont été systématiquementcombinées à la SED au cours d’un test de dénomination orale d’images. Ce protocole opératoire a permisd’optimiser les résultats chirurgicaux en termes de qualité d’exérèse et de préservation du langage, et aconstitué une opportunité unique d’étudier en temps réel les corrélations structure – fonction. Encouplant la localisation anatomique précise où chaque SED a été délivrée —obtenue grâce aux images detractographie naviguées— et la sémiologie des paraphasies induites par la SED —colligée par unorthophoniste présent au bloc opératoire—, nous avons déterminé le rôle spécifique de 5 faisceaux tantcortico-corticaux (faisceau arqué, faisceau fronto-occipital inférieur, faisceau frontal transverse) quecortico-sous-corticaux (fibres prémotrices orofaciales, faisceau fronto-striatal) dans différentes souscomposantesdu langage, i.e. traitement phonologique, traitement sémantique, contrôle moteur,planification articulatoire, contrôle exécutif/cognitif de la réponse verbale. Considérés de façon globale,nos résultats permettent d’envisager une meilleure compréhension de l’organisation anatomofonctionnelledes réseaux cérébraux du langage. Au-delà de l’intérêt scientifique, la possibilité deconstruire le connectome du langage spécifique à chaque individu ouvre la voie vers d’importantesapplications en neurochirurgie, dans une perspective de médecine personnalisée. Aujourd’hui, la chirurgiedes tumeurs cérébrales guidée par l’image. Demain, le développement de nouveaux traitements pour larééducation des aphasies, e.g. la déposition ciblée d’agents pharmacologiques, de cellules souches ou deneuromodulations, interagissant directement avec la connectivité résiduelle épargnée par la lésion. The langage connectome is defined as the neuronal networks that subserve languagefunctions. Anatomically, it comprises specialized cortical areas and modulatory subcortical areas (i.e. deepgray nuclei and cerebellum), as well as their interconnections trough white matter (WM) fascicles.Although brain regions involved in language have been largely explored thanks to functional MRI (fMRI)and intraoprative electrical stimulation (IES), the underlying WM connectivity is still not mastered. It isnot only unknown which WM fascicles specifically contribute to language, but there is also much debateabout their precise anatomy and the functions they subserve during language processing. Betterunderstanding of the structural and functional organization of the language connectome is requisite toreduce postoperative morbidity in neurosurgery and develop targeted treatments for aphasiarehabilitation. Herein, our objective was to map structurally and functionally, in vivo, the subcorticalconnectivity of language. First, we conducted a preclinical study in 20 healthy subjects, combining DTItractography and fMRI (reading comprehension task) to yield connectivity associated with language. Weexplored 8 WM fascicles that have been proposed as putative candidates for language —i.e. arcuatefascicle, superior longitudinal fascicle, inferior fronto-occipital fascicle, uncinate fascicle, inferiorlongitudinal fascicle, middle longitudinal fascicle, operculopremotor fascicle, frontal aslant tract—, towhich we assigned functionality by tracking their connections to the fMRI-derived clusters. We generateda normative database of anatomical characteristics for each WM fascicle, such as volume, length, corticalterminations and their interhemispheric and interindividual variations. By using this construct, weprovided in explicit details the structural map of the language connectome. Second, this body ofknowledge was transposed to brain tumor surgery. Patients suffering of gliomas located close to languageregions were operated on under local anesthesia (i.e. awake surgery) in order to perform intraoperativelanguage mapping (object naming task). Essential language sites were localized through IES andanatomically characterized thanks to navigated tractography images. This intraoperative protocol allowedmaximum tumor resection while preserving language functions. Furthermore, it gave us a uniqueopportunity to perform reliable, real-time structure – function relationships, determining the role of 5WM fascicles (arcuate fascicle, inferior fronto-occipital fascicle, frontal aslant tract, orofacial premotorfibers, frontostriatal fascicle) in different subcomponents of language, i.e. phonological processing,semantic processing, articulatory planning, motor control and executive/cognitive control of verbalresponse. Globally considered, our results allow a better understanding of the anatomo-functionalorganization of the language network in the human brain. Beyond the scientific interest, the possibility toconstruct the individual (patient-specific) connectome paves the way for major applications inneurosurgery, in the perspective of personalized medicine. Today, the maximum safe resection of braintumors located in eloquent language areas, guided by navigated, multimodal images. Tomorrow, thedevelopment of new treatments for rehabilitation of post-stroke aphasia patients, such as the targeteddelivery of drugs, stem cells, or neuromodulation devices, fitting with the residual functional connectivityspared by the lesion. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2016CLF1MM12 Vassal, François 2016-06-27 Clermont-Ferrand 1 Lemaire, Jean-Jacques