Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains

Depuis les années 2000, un progrès significatif est enregistré dans les travaux de recherche qui proposent l’apprentissage de détecteurs d’objets sur des grandes bases de données étiquetées manuellement et disponibles publiquement. Cependant, lorsqu’un détecteur générique d’objets est appliqué sur d...

Full description

Bibliographic Details
Main Author: Maâmatou, Houda
Other Authors: Clermont Auvergne
Language:fr
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017CLFAC015/document
id ndltd-theses.fr-2017CLFAC015
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Apprentissage semi-supervisé
Transfert d’apprentissage
Spécialisation
Filtre Séquentiel de Monte Carlo
Classification/détection d’objets de trafic urbain
Vidéo-surveillance
Semi-Supervised Learning
Transfer learning
Specialization
Sequential Monte Carlo filter
Urban traffic objects detection/classification
Video-surveillance

spellingShingle Apprentissage semi-supervisé
Transfert d’apprentissage
Spécialisation
Filtre Séquentiel de Monte Carlo
Classification/détection d’objets de trafic urbain
Vidéo-surveillance
Semi-Supervised Learning
Transfer learning
Specialization
Sequential Monte Carlo filter
Urban traffic objects detection/classification
Video-surveillance

Maâmatou, Houda
Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
description Depuis les années 2000, un progrès significatif est enregistré dans les travaux de recherche qui proposent l’apprentissage de détecteurs d’objets sur des grandes bases de données étiquetées manuellement et disponibles publiquement. Cependant, lorsqu’un détecteur générique d’objets est appliqué sur des images issues d’une scène spécifique les performances de détection diminuent considérablement. Cette diminution peut être expliquée par les différences entre les échantillons de test et ceux d’apprentissage au niveau des points de vues prises par la(les) caméra(s), de la résolution, de l’éclairage et du fond des images. De plus, l’évolution de la capacité de stockage des systèmes informatiques, la démocratisation de la "vidéo-surveillance" et le développement d’outils d’analyse automatique des données vidéos encouragent la recherche dans le domaine du trafic routier. Les buts ultimes sont l’évaluation des demandes de gestion du trafic actuelles et futures, le développement des infrastructures routières en se basant sur les besoins réels, l’intervention pour une maintenance à temps et la surveillance des routes en continu. Par ailleurs, l’analyse de trafic est une problématique dans laquelle plusieurs verrous scientifiques restent à lever. Ces derniers sont dus à une grande variété dans la fluidité de trafic, aux différents types d’usagers, ainsi qu’aux multiples conditions météorologiques et lumineuses. Ainsi le développement d’outils automatiques et temps réel pour l’analyse vidéo de trafic routier est devenu indispensable. Ces outils doivent permettre la récupération d’informations riches sur le trafic à partir de la séquence vidéo et doivent être précis et faciles à utiliser. C’est dans ce contexte que s’insèrent nos travaux de thèse qui proposent d’utiliser les connaissances antérieurement acquises et de les combiner avec des informations provenant de la nouvelle scène pour spécialiser un détecteur d’objet aux nouvelles situations de la scène cible. Dans cette thèse, nous proposons de spécialiser automatiquement un classifieur/détecteur générique d’objets à une scène de trafic routier surveillée par une caméra fixe. Nous présentons principalement deux contributions. La première est une formalisation originale de transfert d’apprentissage transductif à base d’un filtre séquentiel de type Monte Carlo pour la spécialisation automatique d’un classifieur. Cette formalisation approxime itérativement la distribution cible inconnue au départ, comme étant un ensemble d’échantillons de la base spécialisée à la scène cible. Les échantillons de cette dernière sont sélectionnés à la fois à partir de la base source et de la scène cible moyennant une pondération qui utilise certaines informations a priori sur la scène. La base spécialisée obtenue permet d’entraîner un classifieur spécialisé à la scène cible sans intervention humaine. La deuxième contribution consiste à proposer deux stratégies d’observation pour l’étape mise à jour du filtre SMC. Ces stratégies sont à la base d’un ensemble d’indices spatio-temporels spécifiques à la scène de vidéo-surveillance. Elles sont utilisées pour la pondération des échantillons cibles. Les différentes expérimentations réalisées ont montré que l’approche de spécialisation proposée est performante et générique. Nous avons pu y intégrer de multiples stratégies d’observation. Elle peut être aussi appliquée à tout type de classifieur. De plus, nous avons implémenté dans le logiciel OD SOFT de Logiroad les possibilités de chargement et d’utilisation d’un détecteur fourni par notre approche. Nous avons montré également les avantages des détecteurs spécialisés en comparant leurs résultats avec celui de la méthode Vu-mètre de Logiroad. === Since 2000, a significant progress has been recorded in research work which has proposed to learn object detectors using large manually labeled and publicly available databases. However, when a generic object detector is applied on images of a specific scene, the detection performances will decrease considerably. This decrease may be explained by the differences between the test samples and the learning ones at viewpoints taken by camera(s), resolution, illumination and background images. In addition, the storage capacity evolution of computer systems, the "video surveillance" democratization and the development of automatic video-data analysis tools have encouraged research into the road-traffic domain. The ultimate aims are the management evaluation of current and future trafic requests, the road infrastructures development based on real necessities, the intervention of maintenance task in time and the continuous road surveillance. Moreover, traffic analysis is a problematicness where several scientific locks should be lifted. These latter are due to a great variety of traffic fluidity, various types of users, as well multiple weather and lighting conditions. Thus, developing automatic and real-time tools to analyse road-traffic videos has become an indispensable task. These tools should allow retrieving rich data concerning the traffic from the video sequence and they must be precise and easy to use. This is the context of our thesis work which proposes to use previous knowledges and to combine it with information extracted from the new scene to specialize an object detector to the new situations of the target scene. In this thesis, we propose to automatically specialize a generic object classifier/detector to a road traffic scene surveilled by a fixed camera. We mainly present two contributions. The first one is an original formalization of Transductive Transfer Learning based on a sequential Monte Carlo filter for automatic classifier specialization. This formalization approximates iteratively the previously unknown target distribution as a set of samples composing the specialized dataset of the target scene. The samples of this dataset are selected from both source dataset and target scene further to a weighting step using some prior information on the scene. The obtained specialized dataset allows training a specialized classifier to the target scene without human intervention. The second contribution consists in proposing two observation strategies to be used in the SMC filter’s update step. These strategies are based on a set of specific spatio-temporal cues of the video surveillance scene. They are used to weight the target samples. The different experiments carried out have shown that the proposed specialization approach is efficient and generic. We have been able to integrate multiple observation strategies. It can also be applied to any classifier / detector. In addition, we have implemented into the Logiroad OD SOFT software the loading and utilizing possibilities of a detector provided by our approach. We have also shown the advantages of the specialized detectors by comparing their results to the result of Logiroad’s Vu-meter method.
author2 Clermont Auvergne
author_facet Clermont Auvergne
Maâmatou, Houda
author Maâmatou, Houda
author_sort Maâmatou, Houda
title Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
title_short Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
title_full Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
title_fullStr Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
title_full_unstemmed Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains
title_sort apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : application à l'analyse de flux urbains
publishDate 2017
url http://www.theses.fr/2017CLFAC015/document
work_keys_str_mv AT maamatouhouda apprentissagesemisupervisepourladetectionmultiobjetsdansdessequencesvideosapplicationalanalysedefluxurbains
AT maamatouhouda semisupervisedlearningformultiobjectdetectioninvideosequencesapplicationtotheanalysisofurbanflow
_version_ 1718692553271803904
spelling ndltd-theses.fr-2017CLFAC0152018-06-07T04:23:23Z Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains Semi-supervised learning for multi-object detection in video sequences : Application to the analysis of urban flow Apprentissage semi-supervisé Transfert d’apprentissage Spécialisation Filtre Séquentiel de Monte Carlo Classification/détection d’objets de trafic urbain Vidéo-surveillance Semi-Supervised Learning Transfer learning Specialization Sequential Monte Carlo filter Urban traffic objects detection/classification Video-surveillance Depuis les années 2000, un progrès significatif est enregistré dans les travaux de recherche qui proposent l’apprentissage de détecteurs d’objets sur des grandes bases de données étiquetées manuellement et disponibles publiquement. Cependant, lorsqu’un détecteur générique d’objets est appliqué sur des images issues d’une scène spécifique les performances de détection diminuent considérablement. Cette diminution peut être expliquée par les différences entre les échantillons de test et ceux d’apprentissage au niveau des points de vues prises par la(les) caméra(s), de la résolution, de l’éclairage et du fond des images. De plus, l’évolution de la capacité de stockage des systèmes informatiques, la démocratisation de la "vidéo-surveillance" et le développement d’outils d’analyse automatique des données vidéos encouragent la recherche dans le domaine du trafic routier. Les buts ultimes sont l’évaluation des demandes de gestion du trafic actuelles et futures, le développement des infrastructures routières en se basant sur les besoins réels, l’intervention pour une maintenance à temps et la surveillance des routes en continu. Par ailleurs, l’analyse de trafic est une problématique dans laquelle plusieurs verrous scientifiques restent à lever. Ces derniers sont dus à une grande variété dans la fluidité de trafic, aux différents types d’usagers, ainsi qu’aux multiples conditions météorologiques et lumineuses. Ainsi le développement d’outils automatiques et temps réel pour l’analyse vidéo de trafic routier est devenu indispensable. Ces outils doivent permettre la récupération d’informations riches sur le trafic à partir de la séquence vidéo et doivent être précis et faciles à utiliser. C’est dans ce contexte que s’insèrent nos travaux de thèse qui proposent d’utiliser les connaissances antérieurement acquises et de les combiner avec des informations provenant de la nouvelle scène pour spécialiser un détecteur d’objet aux nouvelles situations de la scène cible. Dans cette thèse, nous proposons de spécialiser automatiquement un classifieur/détecteur générique d’objets à une scène de trafic routier surveillée par une caméra fixe. Nous présentons principalement deux contributions. La première est une formalisation originale de transfert d’apprentissage transductif à base d’un filtre séquentiel de type Monte Carlo pour la spécialisation automatique d’un classifieur. Cette formalisation approxime itérativement la distribution cible inconnue au départ, comme étant un ensemble d’échantillons de la base spécialisée à la scène cible. Les échantillons de cette dernière sont sélectionnés à la fois à partir de la base source et de la scène cible moyennant une pondération qui utilise certaines informations a priori sur la scène. La base spécialisée obtenue permet d’entraîner un classifieur spécialisé à la scène cible sans intervention humaine. La deuxième contribution consiste à proposer deux stratégies d’observation pour l’étape mise à jour du filtre SMC. Ces stratégies sont à la base d’un ensemble d’indices spatio-temporels spécifiques à la scène de vidéo-surveillance. Elles sont utilisées pour la pondération des échantillons cibles. Les différentes expérimentations réalisées ont montré que l’approche de spécialisation proposée est performante et générique. Nous avons pu y intégrer de multiples stratégies d’observation. Elle peut être aussi appliquée à tout type de classifieur. De plus, nous avons implémenté dans le logiciel OD SOFT de Logiroad les possibilités de chargement et d’utilisation d’un détecteur fourni par notre approche. Nous avons montré également les avantages des détecteurs spécialisés en comparant leurs résultats avec celui de la méthode Vu-mètre de Logiroad. Since 2000, a significant progress has been recorded in research work which has proposed to learn object detectors using large manually labeled and publicly available databases. However, when a generic object detector is applied on images of a specific scene, the detection performances will decrease considerably. This decrease may be explained by the differences between the test samples and the learning ones at viewpoints taken by camera(s), resolution, illumination and background images. In addition, the storage capacity evolution of computer systems, the "video surveillance" democratization and the development of automatic video-data analysis tools have encouraged research into the road-traffic domain. The ultimate aims are the management evaluation of current and future trafic requests, the road infrastructures development based on real necessities, the intervention of maintenance task in time and the continuous road surveillance. Moreover, traffic analysis is a problematicness where several scientific locks should be lifted. These latter are due to a great variety of traffic fluidity, various types of users, as well multiple weather and lighting conditions. Thus, developing automatic and real-time tools to analyse road-traffic videos has become an indispensable task. These tools should allow retrieving rich data concerning the traffic from the video sequence and they must be precise and easy to use. This is the context of our thesis work which proposes to use previous knowledges and to combine it with information extracted from the new scene to specialize an object detector to the new situations of the target scene. In this thesis, we propose to automatically specialize a generic object classifier/detector to a road traffic scene surveilled by a fixed camera. We mainly present two contributions. The first one is an original formalization of Transductive Transfer Learning based on a sequential Monte Carlo filter for automatic classifier specialization. This formalization approximates iteratively the previously unknown target distribution as a set of samples composing the specialized dataset of the target scene. The samples of this dataset are selected from both source dataset and target scene further to a weighting step using some prior information on the scene. The obtained specialized dataset allows training a specialized classifier to the target scene without human intervention. The second contribution consists in proposing two observation strategies to be used in the SMC filter’s update step. These strategies are based on a set of specific spatio-temporal cues of the video surveillance scene. They are used to weight the target samples. The different experiments carried out have shown that the proposed specialization approach is efficient and generic. We have been able to integrate multiple observation strategies. It can also be applied to any classifier / detector. In addition, we have implemented into the Logiroad OD SOFT software the loading and utilizing possibilities of a detector provided by our approach. We have also shown the advantages of the specialized detectors by comparing their results to the result of Logiroad’s Vu-meter method. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2017CLFAC015/document Maâmatou, Houda 2017-04-05 Clermont Auvergne Université de Sfax (Tunisie) Chateau, Thierry Essoukri Ben Amara, Najoua