Self-assembly of ionic fluorescent dyes inside polymer nanoparticles : engineering bright fluorescence and switching

L’encapsulation dans des nanomatériaux de polymères de colorants ioniques à l’aide de contre-ions hydrophobes volumineux apparaît être une méthode très efficace pour générer des nanoparticules (NPs) fluorescentes ultra-brillantes pour la bioimagerie. Nous avons d’abord étendu cette approche par cont...

Full description

Bibliographic Details
Main Author: Andreiuk, Bohdan
Other Authors: Strasbourg
Language:en
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017STRAF027/document
Description
Summary:L’encapsulation dans des nanomatériaux de polymères de colorants ioniques à l’aide de contre-ions hydrophobes volumineux apparaît être une méthode très efficace pour générer des nanoparticules (NPs) fluorescentes ultra-brillantes pour la bioimagerie. Nous avons d’abord étendu cette approche par contre-ions aux colorants cyanine opérant dans la gamme du bleu au proche infra-rouge. A partir de NPs chargés en cyanines, une methode de code-barre multicolore pour le traçage cellulaire à long terme a été développé. Ensuite, le rôle des contre-ions hydrophobes volumineux dans l’auto-assemblage des colorants cationiques à l’intérieur des NPs de polymères a été étudié en testant une large collection d’anions. Nous avons montré qu’une forte hydrophobicité du contre-ion augmente l’encapsulation du colorant, régule son clustering et empêche l’agrégation de nanoparticules, alors qu’une grande taille empêche l’auto-inhibition de fluorescence. Enfin, nous avons introduit les contre-ions à base d’aluminates et de barbiturates, qui sur-performent les tetraphénylborates fluorés. Ce travail procure une base solide au concept d’émission et d’encapsulation augmentées par contre-ions pour la préparation de NPs chargés en colorants fluorescents. === Encapsulation of ionic dyes with help of bulky hydrophobic counterions into polymer nanomaterials emerged as powerful method for generating ultrabright fluorescent nanoparticles (NPs) for bioimaging. Here, this counterion-based approach is extended to cyanine dyes, operating from blue to near-infrared range. Based on cyanine-loaded NPs, a multicolour cell barcoding method for long-term cell tracking is developed. Second, the role of bulky hydrophobic counterion in self-assembly of cationic dyes inside polymeric NPs is studied by testing a large library of anions. We show that high hydrophobicity of a counterion enhances dye encapsulation, prevents particle aggregation and tunes dye clustering, while large size prevents dyes from self-quenching. Third, counterions based on aluminates and barbiturates are shown to outperform fluorinated tetraphenylborates. This work provides a solid basis for counterion-enhanced encapsulation and emission concept in preparation of dye-loaded fluorescent NPs.