Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées

Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre con...

Full description

Bibliographic Details
Main Author: Benyo, Krisztian
Other Authors: Bordeaux
Language:en
Published: 2018
Subjects:
Online Access:http://www.theses.fr/2018BORD0156/document
id ndltd-theses.fr-2018BORD0156
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Interaction fluide-structure
Analyse asymptotique
Dynamique des fluides
Équations d’Euler
Particules immergées
Équation de Newton
Fluid-structure interaction
Asymptotic analysis
Fluid dynamics
Euler equation
Immersed particule
Newton equation

spellingShingle Interaction fluide-structure
Analyse asymptotique
Dynamique des fluides
Équations d’Euler
Particules immergées
Équation de Newton
Fluid-structure interaction
Asymptotic analysis
Fluid dynamics
Euler equation
Immersed particule
Newton equation

Benyo, Krisztian
Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
description Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre concerne l’interaction entre des vagues et une structure immergée. La première partie de la thèse repose sur l’analyse mathématique d’un système d’équations différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide infiniment petit dans un fluide incompressible en 2D. Les inconnues du modèle décrivent la position du solide, c’est-à-dire la position du centre de masse et son angle de rotation. Les équations proviennent de la deuxième loi de Newton avec un prototype de force de type Kutta-Joukowski. Plus précisément, nous étudions la dynamique de ce système lorsque l’inertie du solide tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multiéchelles en temps. Pour la dynamique de la position du centre de masse, l’étude met en évidence des analogies avec le mouvement d’une particule chargée dans un champ électromagnétique et la théorie du centre-guide. En l’occurrence, le mouvement du centreguide est donné par une équation de point-vortex. La dynamique de l’angle est quant à elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes très différents se distinguent selon les données initiales. Pour de petites vitesses angulaires initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire bien plus irrégulier est observé. C’est une conséquence particulière et assez spectaculaire de l’enchevêtrement des trajectoires homocliniques. La deuxième partie de la thèse porte sur le problème des vagues dans le cas où le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet des forces de pression du fluide. Nous avons étudié deux systèmes asymptotiques qui décrivent le cas d’un fluide parfait incompressible en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant et de Boussinesq. Grâce à leur caractère bien-posé en temps long, les modèles traités permettent de prendre en compte certains effets de la mécanique du solide, comme les forces de friction, ainsi que les effets non-hydrostatiques. Notre analyse théorique a été complétée par des études numériques. Nous avons développé un schéma de différences finies d’ordre élevé et nous l’avons adapté à ce problème couplé afin de mettre en évidence les effets d’un solide (dont le mouvement est limité à des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de ces travaux, nous avons souligné l’influence des forces de friction sur ce genre de systèmes couplés ainsi que sur le déferlement des vagues. Quant à l’amortissement dû aux effets hydrodynamiques, une vague ressemblance avec le phénomène de l’eau morte est mise en évidence. === This PhD thesis concerns the mathematical analysis of the interaction of an inviscid fluid with immersed structures. More precisely it revolves around two main problems: one of them is the asymptotic analysis of an infinitesimal immersed particle, the other one being the interaction of water waves with a submerged solid object. Concerning the first problem, we studied a system of second order non-linear ODEs, serving as a toy model for the motion of a rigid body immersed in a two-dimensional perfect fluid. The unknowns of the model describe the position of the object, that is the position of its center of mass and the angle of rotation; the equations arise from Newton’s second law with the consideration of a Kutta-Joukowski type lift force. It concerns the detailed analysis of the dynamic of this system when the solid inertia tends to 0. For the evolution of the position of the solid’s center of mass, the study highlights similarities with the motion of a charged particle in an electromagnetic field and the wellknown “guiding center approximation”; it turns out that the motion of the corresponding guiding center is given by a point-vortex equation. As for the angular equation, its evolution is given by a slowly-in-time modulated non-linear pendulum equation. Based on the initial values of the system one can distinguish qualitatively different regimes: for small angular velocities, by the Poincaré-Lindstedt method one observes a modulation in the fast time-scale oscillatory terms, for larger angular velocities however erratic rotational motion is observed, a consequence of Melnikov’s observations on the presence of a homoclinic tangle. About the other problem, the Cauchy problem for the water waves equations is considered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom on which a solid object moves horizontally, its motion determined by the pressure forces exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness results are obtained for both the Saint-Venant and the Boussinesq system coupled with Newton’s equation characterizing the solid motion. Using the particular structure of the coupling terms one is able to go beyond the standard scale for the existence time of solutions to the Boussinesq system with a moving bottom. An extended numerical study has also been carried out for the latter system. A high order finite difference scheme is developed, extending the convergence ratio of previous, staggered grid based models. The discretized solid mechanics are adapted to represent important features of the original model, such as the dissipation due to the friction term. We observed qualitative differences for the transformation of a passing wave over a moving solid object as compared to an immobile one. The movement of the solid not only influences wave attenuation but it affects the shoaling process as well as the wave breaking. The importance of the coefficient of friction is also highlighted, influencing qualitative and quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic damping effects of the waves on the solid motion, reminiscent of the so-called dead water phenomenon.
author2 Bordeaux
author_facet Bordeaux
Benyo, Krisztian
author Benyo, Krisztian
author_sort Benyo, Krisztian
title Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
title_short Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
title_full Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
title_fullStr Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
title_full_unstemmed Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
title_sort analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées
publishDate 2018
url http://www.theses.fr/2018BORD0156/document
work_keys_str_mv AT benyokrisztian analysemathematiquedelinteractiondunfluidenonvisqueuxavecdesstructuresimmergees
AT benyokrisztian mathematicalanalysisoftheinteractionofaninviscidfluidwithimmersedstructures
_version_ 1718796460546326528
spelling ndltd-theses.fr-2018BORD01562018-11-21T04:31:07Z Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées Mathematical analysis of the interaction of an inviscid fluid with immersed structures Interaction fluide-structure Analyse asymptotique Dynamique des fluides Équations d’Euler Particules immergées Équation de Newton Fluid-structure interaction Asymptotic analysis Fluid dynamics Euler equation Immersed particule Newton equation Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre concerne l’interaction entre des vagues et une structure immergée. La première partie de la thèse repose sur l’analyse mathématique d’un système d’équations différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide infiniment petit dans un fluide incompressible en 2D. Les inconnues du modèle décrivent la position du solide, c’est-à-dire la position du centre de masse et son angle de rotation. Les équations proviennent de la deuxième loi de Newton avec un prototype de force de type Kutta-Joukowski. Plus précisément, nous étudions la dynamique de ce système lorsque l’inertie du solide tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multiéchelles en temps. Pour la dynamique de la position du centre de masse, l’étude met en évidence des analogies avec le mouvement d’une particule chargée dans un champ électromagnétique et la théorie du centre-guide. En l’occurrence, le mouvement du centreguide est donné par une équation de point-vortex. La dynamique de l’angle est quant à elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes très différents se distinguent selon les données initiales. Pour de petites vitesses angulaires initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire bien plus irrégulier est observé. C’est une conséquence particulière et assez spectaculaire de l’enchevêtrement des trajectoires homocliniques. La deuxième partie de la thèse porte sur le problème des vagues dans le cas où le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet des forces de pression du fluide. Nous avons étudié deux systèmes asymptotiques qui décrivent le cas d’un fluide parfait incompressible en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant et de Boussinesq. Grâce à leur caractère bien-posé en temps long, les modèles traités permettent de prendre en compte certains effets de la mécanique du solide, comme les forces de friction, ainsi que les effets non-hydrostatiques. Notre analyse théorique a été complétée par des études numériques. Nous avons développé un schéma de différences finies d’ordre élevé et nous l’avons adapté à ce problème couplé afin de mettre en évidence les effets d’un solide (dont le mouvement est limité à des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de ces travaux, nous avons souligné l’influence des forces de friction sur ce genre de systèmes couplés ainsi que sur le déferlement des vagues. Quant à l’amortissement dû aux effets hydrodynamiques, une vague ressemblance avec le phénomène de l’eau morte est mise en évidence. This PhD thesis concerns the mathematical analysis of the interaction of an inviscid fluid with immersed structures. More precisely it revolves around two main problems: one of them is the asymptotic analysis of an infinitesimal immersed particle, the other one being the interaction of water waves with a submerged solid object. Concerning the first problem, we studied a system of second order non-linear ODEs, serving as a toy model for the motion of a rigid body immersed in a two-dimensional perfect fluid. The unknowns of the model describe the position of the object, that is the position of its center of mass and the angle of rotation; the equations arise from Newton’s second law with the consideration of a Kutta-Joukowski type lift force. It concerns the detailed analysis of the dynamic of this system when the solid inertia tends to 0. For the evolution of the position of the solid’s center of mass, the study highlights similarities with the motion of a charged particle in an electromagnetic field and the wellknown “guiding center approximation”; it turns out that the motion of the corresponding guiding center is given by a point-vortex equation. As for the angular equation, its evolution is given by a slowly-in-time modulated non-linear pendulum equation. Based on the initial values of the system one can distinguish qualitatively different regimes: for small angular velocities, by the Poincaré-Lindstedt method one observes a modulation in the fast time-scale oscillatory terms, for larger angular velocities however erratic rotational motion is observed, a consequence of Melnikov’s observations on the presence of a homoclinic tangle. About the other problem, the Cauchy problem for the water waves equations is considered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom on which a solid object moves horizontally, its motion determined by the pressure forces exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness results are obtained for both the Saint-Venant and the Boussinesq system coupled with Newton’s equation characterizing the solid motion. Using the particular structure of the coupling terms one is able to go beyond the standard scale for the existence time of solutions to the Boussinesq system with a moving bottom. An extended numerical study has also been carried out for the latter system. A high order finite difference scheme is developed, extending the convergence ratio of previous, staggered grid based models. The discretized solid mechanics are adapted to represent important features of the original model, such as the dissipation due to the friction term. We observed qualitative differences for the transformation of a passing wave over a moving solid object as compared to an immobile one. The movement of the solid not only influences wave attenuation but it affects the shoaling process as well as the wave breaking. The importance of the coefficient of friction is also highlighted, influencing qualitative and quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic damping effects of the waves on the solid motion, reminiscent of the so-called dead water phenomenon. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018BORD0156/document Benyo, Krisztian 2018-09-25 Bordeaux Sueur, Franck Lannes, David