The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids
Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de b...
Main Author: | Grosshans, Nathan |
---|---|
Other Authors: | Université Paris-Saclay (ComUE) |
Language: | en |
Published: |
2018
|
Subjects: | |
Online Access: | http://www.theses.fr/2018SACLN028/document |
Similar Items
-
The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids
by: Grosshans, Nathan
Published: (2019) -
Comultiplication on monoids
by: Martin Arkowitz, et al.
Published: (1997-01-01) -
The Finite Basis Problem for Kiselman Monoids
by: Ashikhmin D. N., et al.
Published: (2015-12-01) -
Centralising Monoids with Low-Arity Witnesses on a Four-Element Set
by: Mike Behrisch, et al.
Published: (2021-08-01) -
Cohomology of Presheaves of Monoids
by: Pilar Carrasco, et al.
Published: (2020-01-01)