Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène

Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effec...

Full description

Bibliographic Details
Main Author: Feng, Qingqing
Other Authors: Université Paris-Saclay (ComUE)
Language:en
Published: 2019
Subjects:
518
Online Access:http://www.theses.fr/2019SACLX047/document
id ndltd-theses.fr-2019SACLX047
record_format oai_dc
spelling ndltd-theses.fr-2019SACLX0472020-02-03T15:25:47Z Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène Development of a multiscale finite element method for incompressible flows in heterogeneous media Élément de Crouzeix-Raviart Méthodes des éléments finis multi-Échelles Équations de Navier-Stokes Équations de Stokes Milieu hétérogène Crouzeix-Raviart element Multiscale finite element method Navier-Stokes equations Stokes equations Heterogeneous media 518 Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effectuer des simulations numériques directes d'un cœur complet avec la précision souhaitée. Cette thèse est consacré au développement de méthodes d'éléments finis multi-échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un maillage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont solutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie locale. Ces problèmes locaux sont définis par les équations de Stokes ou d'Oseen avec des conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour améliorer la précision des MsFEMs, en enrichissant l'espace des fonctions de base locales. Notamment, on propose des MsFEMs d'ordre élevée dans lesquelles ces conditions aux limites et termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les simulations numériques montrent que les MsFEMs d'ordre élevés améliorent significativement la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler des écoulements dans des milieux hétérogènes de dimension deux et trois. The nuclear reactor core is a highly heterogeneous medium crowded with numerous solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized phenomena. However, modern computing resources are not powerful enough to carry out direct numerical simulations of the full core with the desired accuracy. This thesis is devoted to the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are solutions of local problems on fine meshes by taking precisely local geometries into account. Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions and source terms. We propose several methods to improve the accuracy of MsFEMs, by enriching the approximation space of basis functions. In particular, we propose high-order MsFEMs where boundary conditions and source terms are chosen in spaces of polynomials whose degrees can vary. Numerical simulations show that high-order MsFEMs improve significantly the accuracy of the solution. A multiscale simulation chain is constructed to simulate successfully flows in two- and three-dimensional heterogeneous media. Electronic Thesis or Dissertation Text en http://www.theses.fr/2019SACLX047/document Feng, Qingqing 2019-09-20 Université Paris-Saclay (ComUE) Allaire, Grégoire
collection NDLTD
language en
sources NDLTD
topic Élément de Crouzeix-Raviart
Méthodes des éléments finis multi-Échelles
Équations de Navier-Stokes
Équations de Stokes
Milieu hétérogène
Crouzeix-Raviart element
Multiscale finite element method
Navier-Stokes equations
Stokes equations
Heterogeneous media
518
spellingShingle Élément de Crouzeix-Raviart
Méthodes des éléments finis multi-Échelles
Équations de Navier-Stokes
Équations de Stokes
Milieu hétérogène
Crouzeix-Raviart element
Multiscale finite element method
Navier-Stokes equations
Stokes equations
Heterogeneous media
518
Feng, Qingqing
Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
description Le cœur d'un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles solides et les phénomènes thermohydrauliques à l'échelle macroscopique sont directement impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne suffisent pas à effectuer des simulations numériques directes d'un cœur complet avec la précision souhaitée. Cette thèse est consacré au développement de méthodes d'éléments finis multi-échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un maillage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont solutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie locale. Ces problèmes locaux sont définis par les équations de Stokes ou d'Oseen avec des conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour améliorer la précision des MsFEMs, en enrichissant l'espace des fonctions de base locales. Notamment, on propose des MsFEMs d'ordre élevée dans lesquelles ces conditions aux limites et termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les simulations numériques montrent que les MsFEMs d'ordre élevés améliorent significativement la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler des écoulements dans des milieux hétérogènes de dimension deux et trois. === The nuclear reactor core is a highly heterogeneous medium crowded with numerous solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized phenomena. However, modern computing resources are not powerful enough to carry out direct numerical simulations of the full core with the desired accuracy. This thesis is devoted to the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are solutions of local problems on fine meshes by taking precisely local geometries into account. Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions and source terms. We propose several methods to improve the accuracy of MsFEMs, by enriching the approximation space of basis functions. In particular, we propose high-order MsFEMs where boundary conditions and source terms are chosen in spaces of polynomials whose degrees can vary. Numerical simulations show that high-order MsFEMs improve significantly the accuracy of the solution. A multiscale simulation chain is constructed to simulate successfully flows in two- and three-dimensional heterogeneous media.
author2 Université Paris-Saclay (ComUE)
author_facet Université Paris-Saclay (ComUE)
Feng, Qingqing
author Feng, Qingqing
author_sort Feng, Qingqing
title Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
title_short Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
title_full Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
title_fullStr Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
title_full_unstemmed Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
title_sort développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène
publishDate 2019
url http://www.theses.fr/2019SACLX047/document
work_keys_str_mv AT fengqingqing developpementdunemethodedelementsfinismultiechellespourlesecoulementsincompressiblesdansunmilieuheterogene
AT fengqingqing developmentofamultiscalefiniteelementmethodforincompressibleflowsinheterogeneousmedia
_version_ 1719311712281165824