Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model

Spatial distribution of diurnal variations of aerosol properties in South Korea, both long term and short term, is studied by using 9 AERONET sites from 1999 to 2017 for long-term averages and from an additional 10 sites during the KORUS-AQ field campaign. The extent to which WRF-Chem model and the...

Full description

Bibliographic Details
Main Author: Lennartson, Elizabeth Marie
Other Authors: Wang, Jun
Format: Others
Language:English
Published: University of Iowa 2018
Subjects:
Online Access:https://ir.uiowa.edu/etd/6177
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=7737&context=etd
id ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-7737
record_format oai_dc
spelling ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-77372019-11-09T09:26:46Z Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model Lennartson, Elizabeth Marie Spatial distribution of diurnal variations of aerosol properties in South Korea, both long term and short term, is studied by using 9 AERONET sites from 1999 to 2017 for long-term averages and from an additional 10 sites during the KORUS-AQ field campaign. The extent to which WRF-Chem model and the GOCI satellite retrieval can describe these variations is also analyzed. In daily average, Aerosol Optical Depth (AOD) at 550 nm is 0.386 and shows a diurnal variation of +20 to -30% in inland sites, respectively larger than the counterparts of 0.308 and ± 20% in coastal sites. Both the inland and coastal sites have their diurnal variation peaks in the early morning and in the evening with noontime and early afternoon valleys. In contrast, Angstrom exponent values in all sites are between 1.2 and 1.4 with the exception of the inland rural sites having smaller values near 1.0 during the early morning hours. All inland sites experience a pronounced increase of Angström Exponent from morning to evening, reflecting overall decrease of particle size in daytime. To statistically obtain the climatology of diurnal variation of AOD, a minimum of requirement of ~2 years of observation is needed in coastal rural sites, twice more than the urban sites, which suggests that diurnal variation of AOD in urban setting is distinct and persistent. AERONET, GOCI, WRF-Chem, and observed PM2.5 data consistently show dual peaks for both AOD and PM2.5, one at ~ 10 KST and another ~14 KST. While Korean GOCI satellite is able to consistently capture the diurnal variation of AOD, WRF-Chem clearly has the deficiency to describe the relatively change of peaks and variations between the morning and afternoon, suggesting further studies for the diurnal profile of emissions. Overall, the relative small diurnal variation of PM2.5 is in high contrast with large AOD diurnal variation, which suggests the need to use AOD from geostationary satellites for constrain either modeling or analysis of surface PM2.5 for air quality application. 2018-05-01T07:00:00Z thesis application/pdf https://ir.uiowa.edu/etd/6177 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=7737&context=etd Copyright © 2018 Elizabeth Marie Lennartson Theses and Dissertations eng University of IowaWang, Jun aerosol aerosol optical depth air quality korea particulate matter wrf-chem
collection NDLTD
language English
format Others
sources NDLTD
topic aerosol
aerosol optical depth
air quality
korea
particulate matter
wrf-chem
spellingShingle aerosol
aerosol optical depth
air quality
korea
particulate matter
wrf-chem
Lennartson, Elizabeth Marie
Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
description Spatial distribution of diurnal variations of aerosol properties in South Korea, both long term and short term, is studied by using 9 AERONET sites from 1999 to 2017 for long-term averages and from an additional 10 sites during the KORUS-AQ field campaign. The extent to which WRF-Chem model and the GOCI satellite retrieval can describe these variations is also analyzed. In daily average, Aerosol Optical Depth (AOD) at 550 nm is 0.386 and shows a diurnal variation of +20 to -30% in inland sites, respectively larger than the counterparts of 0.308 and ± 20% in coastal sites. Both the inland and coastal sites have their diurnal variation peaks in the early morning and in the evening with noontime and early afternoon valleys. In contrast, Angstrom exponent values in all sites are between 1.2 and 1.4 with the exception of the inland rural sites having smaller values near 1.0 during the early morning hours. All inland sites experience a pronounced increase of Angström Exponent from morning to evening, reflecting overall decrease of particle size in daytime. To statistically obtain the climatology of diurnal variation of AOD, a minimum of requirement of ~2 years of observation is needed in coastal rural sites, twice more than the urban sites, which suggests that diurnal variation of AOD in urban setting is distinct and persistent. AERONET, GOCI, WRF-Chem, and observed PM2.5 data consistently show dual peaks for both AOD and PM2.5, one at ~ 10 KST and another ~14 KST. While Korean GOCI satellite is able to consistently capture the diurnal variation of AOD, WRF-Chem clearly has the deficiency to describe the relatively change of peaks and variations between the morning and afternoon, suggesting further studies for the diurnal profile of emissions. Overall, the relative small diurnal variation of PM2.5 is in high contrast with large AOD diurnal variation, which suggests the need to use AOD from geostationary satellites for constrain either modeling or analysis of surface PM2.5 for air quality application.
author2 Wang, Jun
author_facet Wang, Jun
Lennartson, Elizabeth Marie
author Lennartson, Elizabeth Marie
author_sort Lennartson, Elizabeth Marie
title Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
title_short Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
title_full Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
title_fullStr Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
title_full_unstemmed Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model
title_sort diurnal variation of aerosol optical depth and pm2.5 in south korea: a synthesis from aeronet, satellite (goci), korus-aq observation, and wrf-chem model
publisher University of Iowa
publishDate 2018
url https://ir.uiowa.edu/etd/6177
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=7737&context=etd
work_keys_str_mv AT lennartsonelizabethmarie diurnalvariationofaerosolopticaldepthandpm25insouthkoreaasynthesisfromaeronetsatellitegocikorusaqobservationandwrfchemmodel
_version_ 1719289195624660992