European day-ahead electricity price forecasting
Dans le contexte de l’augmentation de la part de la production énergétique provenant de sources renouvelables imprévisibles, les prix de l’électricité sont plus volatiles que jamais. Cette volatilité rend la prévision des prix plus difficile mais en même temps de plus grande valeur. Dans cette reche...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/1866/25095 |
id |
ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-25095 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-250952021-06-02T17:24:14Z European day-ahead electricity price forecasting Beaulne, Alexandre Bastin, Fabian Morales, Manuel Electricity Price Forecasting Prévision des prix de l’électricité Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796) Dans le contexte de l’augmentation de la part de la production énergétique provenant de sources renouvelables imprévisibles, les prix de l’électricité sont plus volatiles que jamais. Cette volatilité rend la prévision des prix plus difficile mais en même temps de plus grande valeur. Dans cette recherche, une analyse comparative de 8 modèles de prévision est effectuée sur la tâche de prédire les prix de gros de l’électricité du lendemain en France, en Allemagne, en Belgique et aux Pays-Bas. La méthodologie utilisée pour produire les prévisions est expliquée en détail. Les différences de précision des prévisions entre les modèles sont testées pour leur signification statistique. La méthode de gradient boosting a produit les prévisions les plus précises, suivi de près par une méthode d’ensemble. In the context of the increase in the fraction of power generation coming from unpredictable renewable sources, electricity prices are as volatile as ever. This volatility makes forecasting future prices more difficult yet more valuable. In this research, a benchmark of 8 forecasting models is conducted on the task of predicting day-ahead wholesale electricity prices in France, Germany, Belgium and the Netherlands. The methodology used to produce the forecasts is explained in detail. The differences in forecast accuracy between the models are tested for statistical significance. Gradient boosting produced the most accurate forecasts, closely followed by an ensemble method. 2021-05-31T18:03:45Z NO_RESTRICTION 2021-05-31T18:03:45Z 2021-03-24 2020-05 thesis thèse http://hdl.handle.net/1866/25095 eng application/pdf |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Electricity Price Forecasting Prévision des prix de l’électricité Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796) |
spellingShingle |
Electricity Price Forecasting Prévision des prix de l’électricité Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796) Beaulne, Alexandre European day-ahead electricity price forecasting |
description |
Dans le contexte de l’augmentation de la part de la production énergétique provenant de sources renouvelables imprévisibles, les prix de l’électricité sont plus volatiles que jamais. Cette volatilité rend la prévision des prix plus difficile mais en même temps de plus grande valeur. Dans cette recherche, une analyse comparative de 8 modèles de prévision est effectuée sur la tâche de prédire les prix de gros de l’électricité du lendemain en France, en Allemagne, en Belgique et aux Pays-Bas. La méthodologie utilisée pour produire les prévisions est expliquée en détail. Les différences de précision des prévisions entre les modèles sont testées pour leur signification statistique. La méthode de gradient boosting a produit les prévisions les plus précises, suivi de près par une méthode d’ensemble. === In the context of the increase in the fraction of power generation coming from unpredictable renewable sources, electricity prices are as volatile as ever. This volatility makes forecasting future prices more difficult yet more valuable. In this research, a benchmark of 8 forecasting models is conducted on the task of predicting day-ahead wholesale electricity prices in France, Germany, Belgium and the Netherlands. The methodology used to produce the forecasts is explained in detail. The differences in forecast accuracy between the models are tested for statistical significance. Gradient boosting produced the most accurate forecasts, closely followed by an ensemble method. |
author2 |
Bastin, Fabian |
author_facet |
Bastin, Fabian Beaulne, Alexandre |
author |
Beaulne, Alexandre |
author_sort |
Beaulne, Alexandre |
title |
European day-ahead electricity price forecasting |
title_short |
European day-ahead electricity price forecasting |
title_full |
European day-ahead electricity price forecasting |
title_fullStr |
European day-ahead electricity price forecasting |
title_full_unstemmed |
European day-ahead electricity price forecasting |
title_sort |
european day-ahead electricity price forecasting |
publishDate |
2021 |
url |
http://hdl.handle.net/1866/25095 |
work_keys_str_mv |
AT beaulnealexandre europeandayaheadelectricitypriceforecasting |
_version_ |
1719408650547625984 |