Training deep convolutional architectures for vision
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce proce...
Main Author: | Desjardins, Guillaume |
---|---|
Other Authors: | Bengio, Yoshua |
Language: | en |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1866/3646 |
Similar Items
-
Training deep convolutional architectures for vision
by: Desjardins, Guillaume
Published: (2010) -
Improved training of energy-based models
by: Kumar, Rithesh
Published: (2019) -
Data-efficient reinforcement learning with self-predictive representations
by: Schwarzer, Max
Published: (2021) -
Deep learning of representations and its application to computer vision
by: Goodfellow, Ian
Published: (2015) -
Designing Regularizers and Architectures for Recurrent Neural Networks
by: Krueger, David
Published: (2016)