Mesure de Mahler supérieure de certaines fonctions rationelles

Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler clas...

Full description

Bibliographic Details
Main Author: Lechasseur, Jean-Sébastien
Other Authors: Lalin, Matilde
Language:fr
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1866/8989
Description
Summary:Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique. On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes multiples en termes de valeurs spéciales de fonctions L. On termine avec la réduction complète d’un cas particuler. === The 2-higher and 3-higher Mahler measure of some rational functions are given in terms of special values of the Riemann zeta function, a Dirichlet L-function and multiple polylogarithms. Our results generalize those obtained in [10] for the classical Mahler measure. We improve one of our results by providing a reduction for a certain linear combination of multiple polylogarithms in terms of Dirichlet L-functions. We conclude by giving a complete reduction of a special case.