Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum
Die proximale spinale Muskelatrophie (SMA) stellt eine der häufigsten erblichen Ursachen für den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschwäche und in schweren Fällen auch an sensiblen Ausfällen. Die neurodegenerative Erkrankung wird autosomal-...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | deu |
Published: |
2008
|
Subjects: | |
Online Access: | https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/2235 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26097 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-26097 https://opus.bibliothek.uni-wuerzburg.de/files/2235/karlediss.pdf |
id |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-2235 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
deu |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Spinale Muskelatrophie Actin Motoneuron ddc:610 |
spellingShingle |
Spinale Muskelatrophie Actin Motoneuron ddc:610 Karle, Kathrin Nora Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
description |
Die proximale spinale Muskelatrophie (SMA) stellt eine der häufigsten erblichen Ursachen für den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschwäche und in schweren Fällen auch an sensiblen Ausfällen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquitär exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist für alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus für die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die Überlebensraten der Smn–/–;SMN2-Motoneurone 14 Tage alter Mausembryonen gegenüber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonlängen der Smn-defizienten Motoneurone waren gegenüber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeinträchtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn–/–;SMN2 Motoneuronen eine signifikante Verminderung der Fläche gegenüber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukleären Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn–/–;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsstörung fand sich für das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch für die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Veränderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn–/–;SMN2-Mäusen war die Neuritenlänge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verkürzt und die Fläche der Wachstumskegel hochsignifikant verringert. Im Smn–/–;SMN2 Mausmodell für eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgeprägte, jedoch gleichartige Veränderungen, was auf einen ähnlichen Pathomechanismus in beiden Zelltypen hinweist. === Proximal spinal muscular atrophy (SMA) represents one of the most common hereditary diseases leading to death in childhood. The patients suffer from symmetric and slowly progressive muscle weakness and atrophy as well as sensory defects in severe cases. The neurodegenerative autosomal recessive disease is caused by deletion or mutations of the survival motor neuron 1 (SMN1) gene on chromosome 5q13. The SMN protein is expressed ubiquitously and it is found associated in a multiprotein complex, termed SMN complex, in all tissues under observation. It coordinates spliceosomal complex assembly. The function of these complexes is essential for all cell types. Hence, the question is which pathomechanism causes SMA. Here, we demonstrate that the survival rate of Smn–/–;SMN2 motor neurons of 14-day-old mouse embryos was not reduced in comparison to Smn+/+;SMN2 motor neurons (controls), whereas morphological differences were apparent at the same developmental stage of the cells. Axon length in Smn-deficient motor neurons was significantly reduced vs. control motor neurons. Dendritic outgrowth was not affected. Investigation of the growth cone area of Smn–/–;SMN2 motor neurons showed a significant reduction vs. controls. Additionally, defects in the cytoskeletal structure were detected. In motor neurons of control animals, accumulation of beta-actin was found in the perinuclear compartments, and more pronounced in the growth cones, with an increase of beta-actin accumulation along the axon. In Smn–/–;SMN2 motor neurons, no beta-actin accumulation was detected in distal parts of the axon or in the growth cones. The same imbalance was found for the distribution of the SMN interacting protein hnRNP R (heterogenous nuclear ribonucleoprotein R), and, as shown by others, also for the distribution of beta-actin mRNA, which specifically binds to hnRNP R. In the same manner, alterations of the sensory neurons from dorsal root ganglia of 14-day-old mouse embryos were examined. Neurite outgrowth length of Smn–/–;SMN2 sensory neurons was reduced to a small extent, but significantly, in comparison to control neurons, and reduction of the growth cone area was highly significant. In the Smn–/–;SMN2 mouse model resembling a severe type of SMA, alterations in sensory neurons were less prominent than defects in motor neurons, but of the same kind, pointing to a similar pathomechanism in both cell types. |
author |
Karle, Kathrin Nora |
author_facet |
Karle, Kathrin Nora |
author_sort |
Karle, Kathrin Nora |
title |
Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
title_short |
Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
title_full |
Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
title_fullStr |
Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
title_full_unstemmed |
Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum |
title_sort |
untersuchungen zum pathomechanismus der spinalen muskelatrophie (sma): funktionen des smn-proteins für das axonwachstum |
publishDate |
2008 |
url |
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/2235 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26097 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-26097 https://opus.bibliothek.uni-wuerzburg.de/files/2235/karlediss.pdf |
work_keys_str_mv |
AT karlekathrinnora untersuchungenzumpathomechanismusderspinalenmuskelatrophiesmafunktionendessmnproteinsfurdasaxonwachstum AT karlekathrinnora studiesonthepathomechanismofspinalmuscularatrophysmafunctionsofthesmnproteinforaxongrowth |
_version_ |
1719245182489067520 |
spelling |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-22352019-09-07T16:24:59Z Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum Studies on the pathomechanism of spinal muscular atrophy (SMA): functions of the SMN protein for axon growth Karle, Kathrin Nora Spinale Muskelatrophie Actin Motoneuron ddc:610 Die proximale spinale Muskelatrophie (SMA) stellt eine der häufigsten erblichen Ursachen für den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschwäche und in schweren Fällen auch an sensiblen Ausfällen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquitär exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist für alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus für die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die Überlebensraten der Smn–/–;SMN2-Motoneurone 14 Tage alter Mausembryonen gegenüber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonlängen der Smn-defizienten Motoneurone waren gegenüber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeinträchtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn–/–;SMN2 Motoneuronen eine signifikante Verminderung der Fläche gegenüber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukleären Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn–/–;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsstörung fand sich für das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch für die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Veränderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn–/–;SMN2-Mäusen war die Neuritenlänge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verkürzt und die Fläche der Wachstumskegel hochsignifikant verringert. Im Smn–/–;SMN2 Mausmodell für eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgeprägte, jedoch gleichartige Veränderungen, was auf einen ähnlichen Pathomechanismus in beiden Zelltypen hinweist. Proximal spinal muscular atrophy (SMA) represents one of the most common hereditary diseases leading to death in childhood. The patients suffer from symmetric and slowly progressive muscle weakness and atrophy as well as sensory defects in severe cases. The neurodegenerative autosomal recessive disease is caused by deletion or mutations of the survival motor neuron 1 (SMN1) gene on chromosome 5q13. The SMN protein is expressed ubiquitously and it is found associated in a multiprotein complex, termed SMN complex, in all tissues under observation. It coordinates spliceosomal complex assembly. The function of these complexes is essential for all cell types. Hence, the question is which pathomechanism causes SMA. Here, we demonstrate that the survival rate of Smn–/–;SMN2 motor neurons of 14-day-old mouse embryos was not reduced in comparison to Smn+/+;SMN2 motor neurons (controls), whereas morphological differences were apparent at the same developmental stage of the cells. Axon length in Smn-deficient motor neurons was significantly reduced vs. control motor neurons. Dendritic outgrowth was not affected. Investigation of the growth cone area of Smn–/–;SMN2 motor neurons showed a significant reduction vs. controls. Additionally, defects in the cytoskeletal structure were detected. In motor neurons of control animals, accumulation of beta-actin was found in the perinuclear compartments, and more pronounced in the growth cones, with an increase of beta-actin accumulation along the axon. In Smn–/–;SMN2 motor neurons, no beta-actin accumulation was detected in distal parts of the axon or in the growth cones. The same imbalance was found for the distribution of the SMN interacting protein hnRNP R (heterogenous nuclear ribonucleoprotein R), and, as shown by others, also for the distribution of beta-actin mRNA, which specifically binds to hnRNP R. In the same manner, alterations of the sensory neurons from dorsal root ganglia of 14-day-old mouse embryos were examined. Neurite outgrowth length of Smn–/–;SMN2 sensory neurons was reduced to a small extent, but significantly, in comparison to control neurons, and reduction of the growth cone area was highly significant. In the Smn–/–;SMN2 mouse model resembling a severe type of SMA, alterations in sensory neurons were less prominent than defects in motor neurons, but of the same kind, pointing to a similar pathomechanism in both cell types. 2008 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/2235 urn:nbn:de:bvb:20-opus-26097 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-26097 https://opus.bibliothek.uni-wuerzburg.de/files/2235/karlediss.pdf deu info:eu-repo/semantics/openAccess |