Effects of a Neonicotinoid Insecticide and Population Density on Behaviour and Development of Wood Frogs (Lithobates sylvaticus)

Amphibians have been facing global declines over the last decades due to direct and indirect effects of anthropogenic activities. One of the leading causes is environmental contamination, particularly that of waterbodies which are used by many amphibian species for reproduction, development, and adu...

Full description

Bibliographic Details
Main Author: Bouffard, Jeremie
Other Authors: Careau, Vincent
Format: Others
Language:en
Published: Université d'Ottawa / University of Ottawa 2021
Subjects:
Online Access:http://hdl.handle.net/10393/42390
http://dx.doi.org/10.20381/ruor-26612
Description
Summary:Amphibians have been facing global declines over the last decades due to direct and indirect effects of anthropogenic activities. One of the leading causes is environmental contamination, particularly that of waterbodies which are used by many amphibian species for reproduction, development, and adult life. An important source of contamination comes from agricultural runoffs of pesticides such as neonicotinoids, which are known to alter anuran survival, behaviour, predation stress response, and development. However, few studies have investigated the possible interactions between neonicotinoids and natural environmental stressors which could alter the strength and direction of observed neonicotinoid effects. This study investigated how a concentration of imidacloprid (a neonicotinoid) measured in surface waters interacted with high population density, an important environmental stressor, to influence behaviour and development across metamorphosis in wood frogs (Lithobates sylvaticus) known to breed in agricultural landscapes. I reared tadpoles in a fully crossed design experiment, between two densities (0.33 and 1 tadpole/L) and clean vs contaminated water (10 µg/L imidacloprid). Behaviours were measured in the absence and presence of predation cues using open-field tests at three distinct developmental stages, up to the metamorph stage. I found that imidacloprid did not interact with population density or independently affect behaviours in the absence of predation cues. However, individuals raised at high density compared with low density were more active at an early developmental stage but less active at metamorphic climax. Furthermore, both density and imidacloprid independently decreased the natural behavioural response (i.e., “freezing”) of tadpoles to predation cues. Both treatments also slightly accelerated metamorphosis while only density altered final mass at metamorphosis. Finally, I found that distance travelled was weakly repeatable between aquatic stages but not repeatable across metamorphosis, a pattern that was not affected by treatments. This study provides novel insights on the ecotoxicology of imidacloprid in the presence of a natural stressor, highlighting the importance of including behavioural assays and stressors in studies of amphibian ecotoxicology.