Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO.
We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve ter...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
University of Ottawa (Canada)
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/6242 http://dx.doi.org/10.20381/ruor-11160 |
id |
ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-6242 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-62422018-01-05T19:04:18Z Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. Redmond, Brian F. LeBlanc, Victor, Mathematics. We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve terminating on a pitchfork bifurcation line at a codimension two Takens-Bogdanov point in parameter space. We compute the normal form coefficients of the reduced vector field on the centre manifold in terms of the Taylor coefficients of the original DDE, and in contrast to many previous bifurcation analyses of DDEs, we also compute the unfolding parameters in terms of these coefficients. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. We illustrate these results using simple model systems relevant to the areas of neural networks and atmospheric physics, and show that the results agree with numerical simulations. Finally, note that most of the results of this thesis have already been refereed and published elsewhere (see [26]). 2009-03-23T13:04:46Z 2009-03-23T13:04:46Z 2002 2002 Thesis Source: Masters Abstracts International, Volume: 41-05, page: 1452. 9780612766280 http://hdl.handle.net/10393/6242 http://dx.doi.org/10.20381/ruor-11160 75 p. University of Ottawa (Canada) |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Mathematics. |
spellingShingle |
Mathematics. Redmond, Brian F. Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
description |
We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve terminating on a pitchfork bifurcation line at a codimension two Takens-Bogdanov point in parameter space. We compute the normal form coefficients of the reduced vector field on the centre manifold in terms of the Taylor coefficients of the original DDE, and in contrast to many previous bifurcation analyses of DDEs, we also compute the unfolding parameters in terms of these coefficients. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. We illustrate these results using simple model systems relevant to the areas of neural networks and atmospheric physics, and show that the results agree with numerical simulations. Finally, note that most of the results of this thesis have already been refereed and published elsewhere (see [26]). |
author2 |
LeBlanc, Victor, |
author_facet |
LeBlanc, Victor, Redmond, Brian F. |
author |
Redmond, Brian F. |
author_sort |
Redmond, Brian F. |
title |
Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
title_short |
Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
title_full |
Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
title_fullStr |
Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
title_full_unstemmed |
Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO. |
title_sort |
bifurcation analysis of a class of delay-differential equations with reflectional symmetry: applications to enso. |
publisher |
University of Ottawa (Canada) |
publishDate |
2009 |
url |
http://hdl.handle.net/10393/6242 http://dx.doi.org/10.20381/ruor-11160 |
work_keys_str_mv |
AT redmondbrianf bifurcationanalysisofaclassofdelaydifferentialequationswithreflectionalsymmetryapplicationstoenso |
_version_ |
1718599769215991808 |