Summary: | Neste trabalho procuramos determinar o controle ótimo para problemas de custo médio a longo prazo (CMLP) de sistemas lineares com saltos markovianos (SLSMs) com observação parcial dos estados da cadeia de Markov, e, para isso, implementamos métodos computacionais heurísticos como algoritmos evolutivos de primeira geração - algoritmo genético (AG) básico - e os algoritmos UMDA(Univariate Marginal Distribution Algorithm) e BOA(Bayesian Optimization Algorithm), de segunda geração. Utilizamos um algoritmo variacional para comparar com os métodos implementados e medir a qualidade de suas soluções. Desenvolvemos uma abordagem de transição de níveis de observação (ATNO), partindo de um problema de observação completa e migrando através de problemas parcialmente observados. Cada um dos métodos mencionados acima foi implementado também no contexto da ATNO. Para realizar uma análise estatística sobre o desempenho dos métodos computacionais, utilizamos um gerador de SLSMs com importantes características da teoria de controle como: estabilidade, estabilizabilidade, observabilidade, controlabilidade e detetabilidade. Por fim, apresentamos alguns resultados sobre o CMLP com controles estabilizantes e resultados parciais a respeito da unicidade de solução === In this work we are interested in the optimal control for the long run average cost (LRAC) problem for linear systems with Markov jump parameters (LSMJP), using heuristic methods like first generation evolutionary algorithms - genetic algorithm (GA) - and second generation algorithms including UMDA (Univariate Marginal Distribution Algorithm) and BOA (Bayesian Optimization Algorithm). We have developed a scheme that employs different problems with intermediate levels of observation of the Markov chain, starting with complete observation and shifting to the partial observation problem. The aforementioned methods have been implemented using this scheme. Moreover, in order to compare the methods, we use an algorithm for generating a number of LSMJP and we present a basic statistical analysis of the results. Finally, we present some results on the LRAC with stabilizing control and some partial results on the uniqueness of the solution
|