Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas

Neste trabalho estudamos as propriedades eletrônicas e as estabilidades estruturais do cristal de ZrO2 e dos defeitos de vacância de oxigênio e impureza substitucional de cério. As investigações foram efetuadas através de simulações computacionais baseadas em métodos de primeiros princípios dentro...

Full description

Bibliographic Details
Main Author: Santos, Michel Lacerda Marcondes dos
Other Authors: Assali, Lucy Vitoria Credidio
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2011
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022012-135344/
id ndltd-usp.br-oai-teses.usp.br-tde-29022012-135344
record_format oai_dc
collection NDLTD
language pt
format Others
sources NDLTD
topic Estrutura dos sólidos
impureza
impurities
Structure of solids
zirconia
zircônia
spellingShingle Estrutura dos sólidos
impureza
impurities
Structure of solids
zirconia
zircônia
Santos, Michel Lacerda Marcondes dos
Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
description Neste trabalho estudamos as propriedades eletrônicas e as estabilidades estruturais do cristal de ZrO2 e dos defeitos de vacância de oxigênio e impureza substitucional de cério. As investigações foram efetuadas através de simulações computacionais baseadas em métodos de primeiros princípios dentro do formalismo da teoria do funcional da densidade e utilizando o método APW + lo (Aumengted Plane Waves plus local orbitals), implementado no código computacional WIEN2k, dentro do esquema de supercélula, com relaxações atômicas tratadas de modo apropriado. A zircônia apresenta 3 fases estruturais, dependendo da temperatura. Sua fase mais estável é a monoclínica e, a altas temperaturas, ela apresenta as fases tetragonal e cúbica, sendo estas duas últimas as mais importantes para aplicações tecnológicas. Ela pode ser estabilizada em uma condição metaestável em uma estrutura quase cúbica quando crescida na forma de pós nanocristalinos, com tamanhos menores que um certo tamanho crítico. Outra maneira de se estabilizar as estruturas cúbica e tetragonal, a temperatura ambiente, é através da adição de dopantes, entre eles o cério. Nesses casos, estão sempre presentes vacâncias de oxigênio. Neste trabalho, para o cristal puro de ZrO2, foram calculadas as propriedades das estruturas cristalinas cúbica e tetragonal, constatando-se que a estrutura quase cúbica, proposta em várias investigações relatadas na literatura, pode ser interpretada como uma estrutura tetragonal de corpo centrado, com pequenos deslocamentos dos átomos de oxigênio na direção k . Destes resultados, propomos que nas análises dos dados experimentais obtidos por difração de raios-X e EXAFS (Extended X-ray Absorption Fine Structure) sejam utilizadas simulações onde a estrutura tetragonal de corpo centrado seja considerada como uma possível estrutura para o cristal. Dos estudos da vacância de oxigênio, obtivemos que sua presença quebra a simetria local do sistema e faz com que existam três diferentes distâncias entre um átomo de Zr e os átomos primeiros vizinhos de oxigênio, podendo, também, explicar resultados experimentais de difração de raios-X e EXAFS. Para o centro de impureza substitucional de Ce no sítio do átomo de Zr, nossos resultados apresentam uma possível explicação de porque as impurezas de Ce, em diferentes concentrações, estabilizam o ZrO2 nas estruturas tetragonal e cúbica. === In this investigation we studied the electronic properties and the structural stabilities of zirconia (ZrO2), as well as oxygen vacancy and Ce substitutional impurity. The investigations were carried by computational simulations using ab initio methods, based on the density functional theory and the APW + lo (Aumengted Plane Waves plus local orbitals) method, as implemented in the WIEN2k code, considering the supercell approach and atomic relaxations. Concerning the ZrO2 bulk, the tetragonal (quasi-cubic) phase is not thermodynamically stable at room temperature, but it can be retained in a metastable condition in nanocrystalline powders with crystallite sizes smaller than a certain critical size, or throught addition of dopants, for example cerium. In this cases, oxygen vacancies are always present. In this work we have obtained the properties of the cubic and tetragonal phases of ZrO2. From the results, we propose that the quasi-cubic structure presented in many articles can be understood as a body centered tetragonal structure, with small oxygen atoms displacement perpendicular to the k direction. Those results suggest that the analysis of the X-ray and EXAFS (Extended X-ray Absorption Fine Structure) data should include in the crystallographic model the body-center tetragonal structure. The results of the structural and electronic properties of the oxygen vacancy suggest that its presence could explain the different models of the Zr first neighbor oxygen shell. For the Ce substitutional impurity, our results present a possible explanation why these impurities, in several concentrations, are able to stabilize the ZrO2 in the tetragonal and cubic phases.
author2 Assali, Lucy Vitoria Credidio
author_facet Assali, Lucy Vitoria Credidio
Santos, Michel Lacerda Marcondes dos
author Santos, Michel Lacerda Marcondes dos
author_sort Santos, Michel Lacerda Marcondes dos
title Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
title_short Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
title_full Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
title_fullStr Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
title_full_unstemmed Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
title_sort caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2011
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022012-135344/
work_keys_str_mv AT santosmichellacerdamarcondesdos caracterizacaoestruturaleeletronicadazirconiapuraecomdefeitoseimpurezas
AT santosmichellacerdamarcondesdos structuralandelectroniccharacterizationofzirconiapristineandwithimpurities
_version_ 1719076591345074176
spelling ndltd-usp.br-oai-teses.usp.br-tde-29022012-1353442019-05-09T21:53:49Z Caracterização estrutural e eletrônica da zircônia pura e com defeitos e impurezas Structural and electronic characterization of zirconia, pristine and with impurities Santos, Michel Lacerda Marcondes dos Estrutura dos sólidos impureza impurities Structure of solids zirconia zircônia Neste trabalho estudamos as propriedades eletrônicas e as estabilidades estruturais do cristal de ZrO2 e dos defeitos de vacância de oxigênio e impureza substitucional de cério. As investigações foram efetuadas através de simulações computacionais baseadas em métodos de primeiros princípios dentro do formalismo da teoria do funcional da densidade e utilizando o método APW + lo (Aumengted Plane Waves plus local orbitals), implementado no código computacional WIEN2k, dentro do esquema de supercélula, com relaxações atômicas tratadas de modo apropriado. A zircônia apresenta 3 fases estruturais, dependendo da temperatura. Sua fase mais estável é a monoclínica e, a altas temperaturas, ela apresenta as fases tetragonal e cúbica, sendo estas duas últimas as mais importantes para aplicações tecnológicas. Ela pode ser estabilizada em uma condição metaestável em uma estrutura quase cúbica quando crescida na forma de pós nanocristalinos, com tamanhos menores que um certo tamanho crítico. Outra maneira de se estabilizar as estruturas cúbica e tetragonal, a temperatura ambiente, é através da adição de dopantes, entre eles o cério. Nesses casos, estão sempre presentes vacâncias de oxigênio. Neste trabalho, para o cristal puro de ZrO2, foram calculadas as propriedades das estruturas cristalinas cúbica e tetragonal, constatando-se que a estrutura quase cúbica, proposta em várias investigações relatadas na literatura, pode ser interpretada como uma estrutura tetragonal de corpo centrado, com pequenos deslocamentos dos átomos de oxigênio na direção k . Destes resultados, propomos que nas análises dos dados experimentais obtidos por difração de raios-X e EXAFS (Extended X-ray Absorption Fine Structure) sejam utilizadas simulações onde a estrutura tetragonal de corpo centrado seja considerada como uma possível estrutura para o cristal. Dos estudos da vacância de oxigênio, obtivemos que sua presença quebra a simetria local do sistema e faz com que existam três diferentes distâncias entre um átomo de Zr e os átomos primeiros vizinhos de oxigênio, podendo, também, explicar resultados experimentais de difração de raios-X e EXAFS. Para o centro de impureza substitucional de Ce no sítio do átomo de Zr, nossos resultados apresentam uma possível explicação de porque as impurezas de Ce, em diferentes concentrações, estabilizam o ZrO2 nas estruturas tetragonal e cúbica. In this investigation we studied the electronic properties and the structural stabilities of zirconia (ZrO2), as well as oxygen vacancy and Ce substitutional impurity. The investigations were carried by computational simulations using ab initio methods, based on the density functional theory and the APW + lo (Aumengted Plane Waves plus local orbitals) method, as implemented in the WIEN2k code, considering the supercell approach and atomic relaxations. Concerning the ZrO2 bulk, the tetragonal (quasi-cubic) phase is not thermodynamically stable at room temperature, but it can be retained in a metastable condition in nanocrystalline powders with crystallite sizes smaller than a certain critical size, or throught addition of dopants, for example cerium. In this cases, oxygen vacancies are always present. In this work we have obtained the properties of the cubic and tetragonal phases of ZrO2. From the results, we propose that the quasi-cubic structure presented in many articles can be understood as a body centered tetragonal structure, with small oxygen atoms displacement perpendicular to the k direction. Those results suggest that the analysis of the X-ray and EXAFS (Extended X-ray Absorption Fine Structure) data should include in the crystallographic model the body-center tetragonal structure. The results of the structural and electronic properties of the oxygen vacancy suggest that its presence could explain the different models of the Zr first neighbor oxygen shell. For the Ce substitutional impurity, our results present a possible explanation why these impurities, in several concentrations, are able to stabilize the ZrO2 in the tetragonal and cubic phases. Biblioteca Digitais de Teses e Dissertações da USP Assali, Lucy Vitoria Credidio 2011-12-09 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022012-135344/ pt Liberar o conteúdo para acesso público.