Precoding for MIMO full-duplex relay communication systems

Multiple antennas combined with cooperative relaying, called multiple-input multiple-output (MIMO) relay communications, can be used to improve the reliability and capacity of wireless communications systems. The precoding design is crucial to realize the full potential of MIMO relay systems. Full-d...

Full description

Bibliographic Details
Main Author: Shao, Yunlong
Other Authors: Gulliver, T. Aaron
Format: Others
Language:English
en
Published: 2018
Subjects:
Online Access:https://dspace.library.uvic.ca//handle/1828/9213
Description
Summary:Multiple antennas combined with cooperative relaying, called multiple-input multiple-output (MIMO) relay communications, can be used to improve the reliability and capacity of wireless communications systems. The precoding design is crucial to realize the full potential of MIMO relay systems. Full-duplex (FD) relay communications has become realistic with the development of effective loop interference (LI) cancellation techniques. The focus of this dissertation is on the precoding design for MIMO FD amplify-and-forward (AF) relay communication systems. First, the transceiver design for MIMO FD AF relay communication systems is considered with residual LI, which will exist in any FD system. Then the precoding design is extended to two-way MIMO FD relay communication systems. Iterative algorithms are presented for both systems based on minimizing the mean squared error (MSE) to obtain the source and relay precoders and destination combiner.Finally, the precoding design for MIMO FD relay communication systems with multiple users is investigated.Two systems are examined, namely a multiuser uplink system and a multiuser paired downlink system. By converting the original problems into convex subproblems, locally optimal solutions are found for these systems considering the existence of residual LI. The performance improvement for the proposed FD systems over the corresponding half-duplex (HD) systems is evaluated via simulation. === Graduate