Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California
Foxtail pine (Pinus balfouriana) is a subalpine conifer endemic to California, notably separated into two disjunct subspecies. Previous studies have described the northern subspecies,Pinus balfouriana subsp. balfouriana,as having an uncommonly high level of genetic differentiation and no discernible...
Main Author: | |
---|---|
Format: | Others |
Published: |
VCU Scholars Compass
2019
|
Subjects: | |
Online Access: | https://scholarscompass.vcu.edu/etd/6018 https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=7122&context=etd |
id |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-7122 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-71222019-10-20T22:09:49Z Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California Piri, Rebecca D Foxtail pine (Pinus balfouriana) is a subalpine conifer endemic to California, notably separated into two disjunct subspecies. Previous studies have described the northern subspecies,Pinus balfouriana subsp. balfouriana,as having an uncommonly high level of genetic differentiation and no discernible spatial patterns in phenotypic variation. This study seeks to characterize the spatial genetic structure and patterns of selection of the northern subspecies (Pinus balfouriana subsp. balfouriana) using genome-wide data and to identify the influence of ecology and environment on the unique genetic patterns. I show that genetic differentiation among populations is much less than previously estimated (FST= 0.000644) and there is weak isolation-by-distance structure, but ongoing gene flow is unlikely. Within populations, stand density and competitor effects contribute to inbreeding. I also show that previously measured traits are predominantly determined by genetics. Analyzing by sliding window in the genome, I show that connectivity patterns vary widely throughout the genome and identify several areas that are important to the genetic architecture of the phenotypic traits and plasticity (GxE). Overall, there is high connectivity, genetic similarity, and genetically based trait variation among and within populations of the northern subspecies of foxtail pine due to historical processes, despite biotic interactions driving inbreeding. Persistent genetic isolation, however, may make adaptation to future climate a challenge for the subspecies. 2019-01-01T08:00:00Z text application/pdf https://scholarscompass.vcu.edu/etd/6018 https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=7122&context=etd © The Author Theses and Dissertations VCU Scholars Compass foxtail pine population genetics Evolution Genetics Integrative Biology Population Biology |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
foxtail pine population genetics Evolution Genetics Integrative Biology Population Biology |
spellingShingle |
foxtail pine population genetics Evolution Genetics Integrative Biology Population Biology Piri, Rebecca D Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
description |
Foxtail pine (Pinus balfouriana) is a subalpine conifer endemic to California, notably separated into two disjunct subspecies. Previous studies have described the northern subspecies,Pinus balfouriana subsp. balfouriana,as having an uncommonly high level of genetic differentiation and no discernible spatial patterns in phenotypic variation. This study seeks to characterize the spatial genetic structure and patterns of selection of the northern subspecies (Pinus balfouriana subsp. balfouriana) using genome-wide data and to identify the influence of ecology and environment on the unique genetic patterns. I show that genetic differentiation among populations is much less than previously estimated (FST= 0.000644) and there is weak isolation-by-distance structure, but ongoing gene flow is unlikely. Within populations, stand density and competitor effects contribute to inbreeding. I also show that previously measured traits are predominantly determined by genetics. Analyzing by sliding window in the genome, I show that connectivity patterns vary widely throughout the genome and identify several areas that are important to the genetic architecture of the phenotypic traits and plasticity (GxE). Overall, there is high connectivity, genetic similarity, and genetically based trait variation among and within populations of the northern subspecies of foxtail pine due to historical processes, despite biotic interactions driving inbreeding. Persistent genetic isolation, however, may make adaptation to future climate a challenge for the subspecies. |
author |
Piri, Rebecca D |
author_facet |
Piri, Rebecca D |
author_sort |
Piri, Rebecca D |
title |
Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
title_short |
Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
title_full |
Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
title_fullStr |
Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
title_full_unstemmed |
Spatial Genetic Structure and Local Adaptation within and among Foxtail Pine (Pinus balfouriana subsp. balfouriana) Populations Located in the Klamath Mountains, California |
title_sort |
spatial genetic structure and local adaptation within and among foxtail pine (pinus balfouriana subsp. balfouriana) populations located in the klamath mountains, california |
publisher |
VCU Scholars Compass |
publishDate |
2019 |
url |
https://scholarscompass.vcu.edu/etd/6018 https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=7122&context=etd |
work_keys_str_mv |
AT pirirebeccad spatialgeneticstructureandlocaladaptationwithinandamongfoxtailpinepinusbalfourianasubspbalfourianapopulationslocatedintheklamathmountainscalifornia |
_version_ |
1719273402465779712 |