Selective Flooding for Better QoS Routing
Quality-of-service (QoS) requirements for the timely delivery of real-time multimedia raise new challenges for the networking world. A key component of QoS is QoS routing which allows the selection of network routes with sufficient resources for requested QoS parameters. Several techniques have been...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Digital WPI
2000
|
Subjects: | |
Online Access: | https://digitalcommons.wpi.edu/etd-theses/800 https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=1799&context=etd-theses |
id |
ndltd-wpi.edu-oai-digitalcommons.wpi.edu-etd-theses-1799 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-wpi.edu-oai-digitalcommons.wpi.edu-etd-theses-17992019-03-22T05:48:40Z Selective Flooding for Better QoS Routing Kannan, Gangadharan Quality-of-service (QoS) requirements for the timely delivery of real-time multimedia raise new challenges for the networking world. A key component of QoS is QoS routing which allows the selection of network routes with sufficient resources for requested QoS parameters. Several techniques have been proposed in the literature to compute QoS routes, most of which require dynamic update of link-state information across the Internet. Given the growing size of the Internet, it is becoming increasingly difficult to gather up-to-date state information in a dynamic environment. We propose a new technique to compute QoS routes on the Internet in a fast and efficient manner without any need for dynamic updates. Our method, known as Selective Flooding, checks the state of the links on a set of pre-computed routes from the source to the destination in parallel and based on this information computes the best route and then reserves resources. We implemented Selective Flooding on a QoS routing simulator and evaluated the performance of Selective Flooding compared to source routing for a variety of network parameters. We find Selective Flooding consistently outperforms source routing in terms of call-blocking rate and outperforms source routing in terms of network overhead for some network conditions. The contributions of this thesis include the design of a new QoS routing algorithm, Selective Flooding, extensive evaluation of Selective Flooding under a variety of network conditions and a working simulation model for future research. 2000-05-10T07:00:00Z text application/pdf https://digitalcommons.wpi.edu/etd-theses/800 https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=1799&context=etd-theses Masters Theses (All Theses, All Years) Digital WPI Mark L. Claypool, Advisor David Finkel, Reader High-speed Networks Selective Flooding QoS Routing Computer network protocols Internet Real-time data processing |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
High-speed Networks Selective Flooding QoS Routing Computer network protocols Internet Real-time data processing |
spellingShingle |
High-speed Networks Selective Flooding QoS Routing Computer network protocols Internet Real-time data processing Kannan, Gangadharan Selective Flooding for Better QoS Routing |
description |
Quality-of-service (QoS) requirements for the timely delivery of real-time multimedia raise new challenges for the networking world. A key component of QoS is QoS routing which allows the selection of network routes with sufficient resources for requested QoS parameters. Several techniques have been proposed in the literature to compute QoS routes, most of which require dynamic update of link-state information across the Internet. Given the growing size of the Internet, it is becoming increasingly difficult to gather up-to-date state information in a dynamic environment. We propose a new technique to compute QoS routes on the Internet in a fast and efficient manner without any need for dynamic updates. Our method, known as Selective Flooding, checks the state of the links on a set of pre-computed routes from the source to the destination in parallel and based on this information computes the best route and then reserves resources. We implemented Selective Flooding on a QoS routing simulator and evaluated the performance of Selective Flooding compared to source routing for a variety of network parameters. We find Selective Flooding consistently outperforms source routing in terms of call-blocking rate and outperforms source routing in terms of network overhead for some network conditions. The contributions of this thesis include the design of a new QoS routing algorithm, Selective Flooding, extensive evaluation of Selective Flooding under a variety of network conditions and a working simulation model for future research. |
author2 |
Mark L. Claypool, Advisor |
author_facet |
Mark L. Claypool, Advisor Kannan, Gangadharan |
author |
Kannan, Gangadharan |
author_sort |
Kannan, Gangadharan |
title |
Selective Flooding for Better QoS Routing |
title_short |
Selective Flooding for Better QoS Routing |
title_full |
Selective Flooding for Better QoS Routing |
title_fullStr |
Selective Flooding for Better QoS Routing |
title_full_unstemmed |
Selective Flooding for Better QoS Routing |
title_sort |
selective flooding for better qos routing |
publisher |
Digital WPI |
publishDate |
2000 |
url |
https://digitalcommons.wpi.edu/etd-theses/800 https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=1799&context=etd-theses |
work_keys_str_mv |
AT kannangangadharan selectivefloodingforbetterqosrouting |
_version_ |
1719006277210734592 |