Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model

"A Low Noise Amplifier (LNA) is an important building block in the RF receiver chain. Typically the LNA should provide acceptable gain and high linearity while maintaining low noise and power consumption. To optimize these conflicting goals the so-called Cascode topology is widely used in ind...

Full description

Bibliographic Details
Main Author: Wang, Kefei
Other Authors: Gene Bogdanov, Committee Member
Format: Others
Published: Digital WPI 2012
Subjects:
Online Access:https://digitalcommons.wpi.edu/etd-theses/1053
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2052&context=etd-theses
id ndltd-wpi.edu-oai-digitalcommons.wpi.edu-etd-theses-2052
record_format oai_dc
spelling ndltd-wpi.edu-oai-digitalcommons.wpi.edu-etd-theses-20522019-03-22T05:49:40Z Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model Wang, Kefei "A Low Noise Amplifier (LNA) is an important building block in the RF receiver chain. Typically the LNA should provide acceptable gain and high linearity while maintaining low noise and power consumption. To optimize these conflicting goals the so-called Cascode topology is widely used in industry. Here the gain cell is comprised of two transistors, one in common-source and the other in common gate configuration. Cascode has a number of competitive advantages over other topologies such as high output impedance that shields the input device from voltage variations at the output, good reverse isolation resulting in improved stability, and acceptable input matching. Moreover, the topology features excellent frequency characteristics. Unfortunately, a Cascode design is expensive to deploy in RF systems and it requires more careful tuning and matching. Since the design relies on many circuit components, optimization methods are generally difficult to implement and often inaccurate in their predictions. To overcome these problems, this thesis proposes a modeling environment within the Advanced Design Systems (ADS) simulator that utilized DC and RF measurements in an effort to characterize each transistor separately. The model creates an easy-to-apply design approach capable of predicting the most important circuit components of the Cascode topology. The validity of the method is tested in ADS with a realistic p-HEMT library device. The comparison between model prediction and the realistic device involves both standard transistor parameters and high-frequency parasitic effects. " 2012-10-05T07:00:00Z text application/pdf https://digitalcommons.wpi.edu/etd-theses/1053 https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2052&context=etd-theses Masters Theses (All Theses, All Years) Digital WPI Gene Bogdanov, Committee Member small signal model Cascode LNA optimization parameters estimation
collection NDLTD
format Others
sources NDLTD
topic small signal model
Cascode LNA
optimization
parameters estimation
spellingShingle small signal model
Cascode LNA
optimization
parameters estimation
Wang, Kefei
Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
description "A Low Noise Amplifier (LNA) is an important building block in the RF receiver chain. Typically the LNA should provide acceptable gain and high linearity while maintaining low noise and power consumption. To optimize these conflicting goals the so-called Cascode topology is widely used in industry. Here the gain cell is comprised of two transistors, one in common-source and the other in common gate configuration. Cascode has a number of competitive advantages over other topologies such as high output impedance that shields the input device from voltage variations at the output, good reverse isolation resulting in improved stability, and acceptable input matching. Moreover, the topology features excellent frequency characteristics. Unfortunately, a Cascode design is expensive to deploy in RF systems and it requires more careful tuning and matching. Since the design relies on many circuit components, optimization methods are generally difficult to implement and often inaccurate in their predictions. To overcome these problems, this thesis proposes a modeling environment within the Advanced Design Systems (ADS) simulator that utilized DC and RF measurements in an effort to characterize each transistor separately. The model creates an easy-to-apply design approach capable of predicting the most important circuit components of the Cascode topology. The validity of the method is tested in ADS with a realistic p-HEMT library device. The comparison between model prediction and the realistic device involves both standard transistor parameters and high-frequency parasitic effects. "
author2 Gene Bogdanov, Committee Member
author_facet Gene Bogdanov, Committee Member
Wang, Kefei
author Wang, Kefei
author_sort Wang, Kefei
title Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
title_short Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
title_full Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
title_fullStr Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
title_full_unstemmed Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model
title_sort parameter estimation of a high frequency cascode low noise amplifier model
publisher Digital WPI
publishDate 2012
url https://digitalcommons.wpi.edu/etd-theses/1053
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2052&context=etd-theses
work_keys_str_mv AT wangkefei parameterestimationofahighfrequencycascodelownoiseamplifiermodel
_version_ 1719006317765459968