In situ and in operando detection of redox reactions with integrated potential probes during vanadium transport in ion exchange membranes

The vanadium crossover is the primary source of capacity fade in vanadium flow batteries (VFB). Available transport models for the vanadium crossover use significantly different diffusion coefficients for the vanadium species. Previously, we demonstrated that redox reactions between V3+ and VO2+ occ...

Full description

Bibliographic Details
Main Authors: Becker, M. (Author), Beuermann, S. (Author), Bogar, M.S (Author), Drache, M. (Author), Fittschen, U.E.A (Author), Gohs, U. (Author), Kunz, U. (Author), Lemmermann, T. (Author), Stehle, M. (Author), Turek, T. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01981nam a2200301Ia 4500
001 0.1016-j.jpowsour.2022.231343
008 220421s2022 CNT 000 0 und d
020 |a 03787753 (ISSN) 
245 1 0 |a In situ and in operando detection of redox reactions with integrated potential probes during vanadium transport in ion exchange membranes 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jpowsour.2022.231343 
520 3 |a The vanadium crossover is the primary source of capacity fade in vanadium flow batteries (VFB). Available transport models for the vanadium crossover use significantly different diffusion coefficients for the vanadium species. Previously, we demonstrated that redox reactions between V3+ and VO2+ occur within cation exchange membranes. Therefore, it seems very likely that the neglect of redox reactions inside the membrane may lead to these inconsistencies. To investigate the reactions inside the membrane, a time-resolved in situ and in operando method based on potential probes, which have already been successfully used to measure potentials on and in electrodes, was developed. The probes were integrated into firmly pressed layers of several membranes. This work reports the new experimental design and presents the first results which give valuable insights into the transport processes and redox reactions inside the membrane. © 2022 The Authors 
650 0 4 |a Crossover 
650 0 4 |a Membrane transport phenomena 
650 0 4 |a Potential probe 
650 0 4 |a Redox reactions 
650 0 4 |a Vanadium flow battery 
700 1 0 |a Becker, M.  |e author 
700 1 0 |a Beuermann, S.  |e author 
700 1 0 |a Bogar, M.S.  |e author 
700 1 0 |a Drache, M.  |e author 
700 1 0 |a Fittschen, U.E.A.  |e author 
700 1 0 |a Gohs, U.  |e author 
700 1 0 |a Kunz, U.  |e author 
700 1 0 |a Lemmermann, T.  |e author 
700 1 0 |a Stehle, M.  |e author 
700 1 0 |a Turek, T.  |e author 
773 |t Journal of Power Sources