AFM macro-probes to investigate whole 3D cardiac spheroids

In its many applications, the Atomic Force Microscope (AFM) is a promising tool in cardiac mechanobiology because it can unravel the viscoelastic and mechano-dynamic properties of individual cardiomyocytes. However, the biophysical investigation of more accurate 3D models is hampered by commercial p...

Full description

Bibliographic Details
Main Authors: Andolfi, L. (Author), Lazzarino, M. (Author), Mestroni, L. (Author), Taylor, M.R.G (Author), Zanetti, M. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
AFM
Online Access:View Fulltext in Publisher
LEADER 02323nam a2200409Ia 4500
001 0.1016-j.mne.2022.100134
008 220421s2022 CNT 000 0 und d
020 |a 25900072 (ISSN) 
245 1 0 |a AFM macro-probes to investigate whole 3D cardiac spheroids 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.mne.2022.100134 
520 3 |a In its many applications, the Atomic Force Microscope (AFM) is a promising tool in cardiac mechanobiology because it can unravel the viscoelastic and mechano-dynamic properties of individual cardiomyocytes. However, the biophysical investigation of more accurate 3D models is hampered by commercial probes, which typically operate at the cell sub-compartmental resolution. We have previously shown how flat macro-probes can overcome these limitations by extending the AFM mechanical measurements to multicellular aggregates. Such macro-probes are fabricated by standard micromachining and carry a flat polymeric wedge to offset the AFM mounting tilt. Therefore, the AFM is upgraded to a micro-parallel plate rheometer with unmatched force range and sensitivity. In this article, we show how these macro-probes can be applied to reveal the global rheology of primary cardiomyocytes spheroids, by performing stress-relaxation tests. More importantly, we demonstrate that these macro-probes can be used as passive sensors capable of monitoring the spheroid beating force and beating pattern, and to perform a “micro-CPR” on the spheroid itself. © 2022 The Authors 
650 0 4 |a 3D models 
650 0 4 |a 3d-modeling 
650 0 4 |a AFM 
650 0 4 |a Atomic force 
650 0 4 |a Atomic force microscope 
650 0 4 |a Cardiomyocytes 
650 0 4 |a Cardiomyocytes 
650 0 4 |a Dynamics properties 
650 0 4 |a Elasticity 
650 0 4 |a Mechanical measurements 
650 0 4 |a Mechanobiology 
650 0 4 |a Mechano-biology 
650 0 4 |a Microfabrication 
650 0 4 |a Probes 
650 0 4 |a Rheology 
650 0 4 |a Spheroid 
650 0 4 |a Spheroids 
650 0 4 |a Stress relaxation 
650 0 4 |a Viscoelastics 
700 1 0 |a Andolfi, L.  |e author 
700 1 0 |a Lazzarino, M.  |e author 
700 1 0 |a Mestroni, L.  |e author 
700 1 0 |a Taylor, M.R.G.  |e author 
700 1 0 |a Zanetti, M.  |e author 
773 |t Micro and Nano Engineering