Dimers of gold-silver core-shell nanospheres: The effect of interparticle gap on the refractive index sensitivity and extinction spectrum

Gold-silver and silver-gold core-shell nanoparticle dimers were studied based on their extinction cross-section spectrum and bulk refractive index sensitivity. The simulations were performed by using the boundary element method (BEM) and the polarization direction of the used plane-wave excitation w...

Full description

Bibliographic Details
Main Authors: Bonyár, A. (Author), Csarnovics, I. (Author), Szántó, G. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02926nam a2200457Ia 4500
001 0.1016-j.photonics.2022.101023
008 220421s2022 CNT 000 0 und d
020 |a 15694410 (ISSN) 
245 1 0 |a Dimers of gold-silver core-shell nanospheres: The effect of interparticle gap on the refractive index sensitivity and extinction spectrum 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.photonics.2022.101023 
520 3 |a Gold-silver and silver-gold core-shell nanoparticle dimers were studied based on their extinction cross-section spectrum and bulk refractive index sensitivity. The simulations were performed by using the boundary element method (BEM) and the polarization direction of the used plane-wave excitation was parallel with the symmetry axis. The running parameters were the particles’ outer and inner radii and their (interparticle gap/full diameter). For different particle sizes and distances, the shape of the spectra and the refractive index sensitivities are presented. In the extinction spectra, the observable peaks originate from either the gold or silver components and the most intense peak position can be distinctly assigned to one of them. A sharp boundary separates these two regions in the plane of the core radius and shell thickness parameters. It was found that by decreasing the interparticle gap, the boundary line between these two regions shifts towards the thinner shells for Ag@Au dimers, while it shifts towards the smaller cores for Au@Ag dimers. Since the sensitivity of peaks corresponding to the Au and Ag components are significantly different, the presented data can help optimize interparticle gaps concerning the core/shell thicknesses to maximize the sensitivity of nanoparticle dimers. © 2022 The Authors 
650 0 4 |a Bimetallic nanoparticles 
650 0 4 |a Boundary element method 
650 0 4 |a Boundary element method 
650 0 4 |a Boundary-element methods 
650 0 4 |a Core shell 
650 0 4 |a Core shell nanoparticles 
650 0 4 |a Core-shell bimetallic nanoparticle 
650 0 4 |a Core-shell bimetallic nanoparticle 
650 0 4 |a Dimers 
650 0 4 |a Extinction spectrum 
650 0 4 |a Gold nanoparticles 
650 0 4 |a Interparticles 
650 0 4 |a Localized surface plasmon resonance 
650 0 4 |a Localized surface plasmon resonance 
650 0 4 |a Nanoparticle dimer 
650 0 4 |a Nanoparticle dimer 
650 0 4 |a Plasmonics 
650 0 4 |a Plasmonics 
650 0 4 |a Plasmonics 
650 0 4 |a Refractive index 
650 0 4 |a Refractive index sensitivity 
650 0 4 |a Refractive index sensitivity 
650 0 4 |a Sailing vessels 
650 0 4 |a Shells (structures) 
650 0 4 |a Surface plasmon resonance 
700 1 0 |a Bonyár, A.  |e author 
700 1 0 |a Csarnovics, I.  |e author 
700 1 0 |a Szántó, G.  |e author 
773 |t Photonics and Nanostructures - Fundamentals and Applications