Summary: | Train delay prediction can improve the quality of train dispatching, which helps the dispatcher to estimate the running state of the train more accurately and make reasonable dispatching decision. The delay of one train is affected by many factors, such as passenger flow, fault, extreme weather, dispatching strategy. The departure time of one train is generally determined by dispatchers, which is limited by their strategy and knowledge. The existing train delay prediction methods cannot comprehensively consider the temporal and spatial dependence between the multiple trains and routes. In this paper, we don't try to predict the specific delay time of one train, but predict the collective cumulative effect of train delay over a certain period, which is represented by the total number of arrival delays in one station. We propose a deep learning framework, train spatio-temporal graph convolutional network (TSTGCN), to predict the collective cumulative effect of train delay in one station for train dispatching and emergency plans. The proposed model is mainly composed of the recent, daily and weekly components. Each component contains two parts: spatio-temporal attention mechanism and spatio-temporal convolution, which can effectively capture spatio-temporal characteristics. The weighted fusion of the three components produces the final prediction result. The experiments on the train operation data from China Railway Passenger Ticket System demonstrate that TSTGCN clearly outperforms the existing advanced baselines in train delay prediction. © 2000-2011 IEEE.
|