Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems

One-stage production of carbohydrate-enriched microalgae biomass in wastewater is a promising option to obtain biofuels. Understanding the interaction of water quality parameters such as nutrients, carbon, internal carbohydrates, and microbial composition in the culture is crucial for efficient oper...

Full description

Bibliographic Details
Main Authors: Arias, D.M (Author), García, J. (Author), Gonzalez-Huitron, V. (Author), Morales-Rosales, L.A (Author), Partida, M.V (Author), Rodríguez-Rangel, H. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03683nam a2200565Ia 4500
001 0.3390-en15072500
008 220421s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15072500 
520 3 |a One-stage production of carbohydrate-enriched microalgae biomass in wastewater is a promising option to obtain biofuels. Understanding the interaction of water quality parameters such as nutrients, carbon, internal carbohydrates, and microbial composition in the culture is crucial for efficient operation and viable large-scale cultivation. Bioprocess models are an essential tool for studying the simultaneous effect of complex factors on carbohydrate accumulation, optimizing the process, and reducing operational costs. In this sense, we use a dataset obtained from an empirical model that analyzed the accumulation of carbohydrates in a single process (simultaneous growth and accumulation) from real wastewater. In this experiment, there were no ideal conditions (limiting nutrient conditions), but rather these limitations are guaranteed by the operating conditions (hydraulic retention times/nutrient or carbon loads). Thus, the model integrates 18 variables that are affected and not only carbohydrates. The effect of these variables directly influences the accumulation of carbohydrates. Therefore, this paper analyzes artificial intelligence (AI) algorithms to develop a model to forecast biomass production in wastewater treatment systems. Carbohydrates were modeled using five artificial intelligence methods: (1) Artificial Neural Networks (ANNs), (2) Convolutional Neural Networks (CNN), (3) Long Short-Term Memory Network (LSTMs), (4) K-Nearest Neighbors (kNN), and (5) Random Forest (RF)). The AI methods allow learning how several components interact and if their combinations work faster than building the physical experiments over the same period of time. After comparing the five learning models, the CNN-1D model obtained the best results with an MSE (Mean Squared Error) = 0.0028. This result shows that the model adequately approximates the system’s dynamics. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Accumulation model 
650 0 4 |a Algae 
650 0 4 |a Artificial intelligence methods 
650 0 4 |a Biomass 
650 0 4 |a Biomass productions 
650 0 4 |a carbohydrate accumulation modeling 
650 0 4 |a Carbohydrate accumulation modeling 
650 0 4 |a Carbohydrates 
650 0 4 |a Carbon 
650 0 4 |a Convolution 
650 0 4 |a Convolutional neural network 
650 0 4 |a Cytology 
650 0 4 |a Decision trees 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning algorithm 
650 0 4 |a deep learning algorithms 
650 0 4 |a Heavy metals 
650 0 4 |a Learning algorithms 
650 0 4 |a Machine learning methods 
650 0 4 |a Mean square error 
650 0 4 |a Method model 
650 0 4 |a microalgae 
650 0 4 |a Microorganisms 
650 0 4 |a Nearest neighbor search 
650 0 4 |a Neural networks 
650 0 4 |a Nutrients 
650 0 4 |a resource recovery 
650 0 4 |a Resource recovery 
650 0 4 |a Wastewater treatment 
650 0 4 |a Wastewater treatment system 
650 0 4 |a Water quality 
700 1 0 |a Arias, D.M.  |e author 
700 1 0 |a García, J.  |e author 
700 1 0 |a Gonzalez-Huitron, V.  |e author 
700 1 0 |a Morales-Rosales, L.A.  |e author 
700 1 0 |a Partida, M.V.  |e author 
700 1 0 |a Rodríguez-Rangel, H.  |e author 
773 |t Energies