Impact of Preparation Method and Y2 O3 Content on the Properties of the YSZ Electrolyte

This study is an effort to cover and interconnect multiple aspects of the fabrication of the yttria-stabilized zirconia (YSZ) from powder preparation to a solid electrolyte suitable for utilization in solid oxide cells. Thus, a series of YSZ electrolytes was prepared, differing in the content of the...

Full description

Bibliographic Details
Main Authors: Adamová, N. (Author), Bouzek, K. (Author), Budáč, D. (Author), Carda, M. (Author), Paidar, M. (Author), Rečková, V. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
YSZ
Online Access:View Fulltext in Publisher
LEADER 02914nam a2200505Ia 4500
001 0.3390-en15072565
008 220421s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Impact of Preparation Method and Y2 O3 Content on the Properties of the YSZ Electrolyte 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15072565 
520 3 |a This study is an effort to cover and interconnect multiple aspects of the fabrication of the yttria-stabilized zirconia (YSZ) from powder preparation to a solid electrolyte suitable for utilization in solid oxide cells. Thus, a series of YSZ electrolytes was prepared, differing in the content of the Y2 O3 dopant and in the method of preparation. Combustion synthesis along with the thermal decomposition of precursors was used for YSZ powder synthesis with a dopant content of 8 to 18 mol.%. Post-synthesis treatment of the powder was necessary for achieving satisfactory quality of the subsequent sintering step. The morphology analyses of the YSZ powders and sintered electrolytes produced proved that small particles with a uniform size distribution are essential for obtaining a dense electrolyte. Furthermore, the conductivity of YSZ electrolytes with different Y2 O3 contents was examined in the temperature range of 400 to 800◦ C. The lowest conductivity was found for the sample with the highest Y2 O3 content. The obtained results enable the preparation methods, YSZ powder morphology, and composition to be connected to the mechanical and electrochemical properties of the YSZ electrolyte. Thus, this study links every step of YSZ electrolyte fabrication, which has not been sufficiently clearly described until now. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Combustion synthesis 
650 0 4 |a conductivity 
650 0 4 |a Conductivity 
650 0 4 |a Decomposition 
650 0 4 |a dopant content 
650 0 4 |a Dopant content 
650 0 4 |a Morphology 
650 0 4 |a Particle size analysis 
650 0 4 |a powder synthesis 
650 0 4 |a Powder synthesis 
650 0 4 |a Preparation method 
650 0 4 |a shape molding 
650 0 4 |a Shape molding 
650 0 4 |a Sintering 
650 0 4 |a Solid electrolytes 
650 0 4 |a solid oxide cells 
650 0 4 |a Solid oxide fuel cells (SOFC) 
650 0 4 |a Solid-oxide cells 
650 0 4 |a YSZ 
650 0 4 |a Yttria stabilized zirconia 
650 0 4 |a Yttria stabilized zirconia powders 
650 0 4 |a yttria-stabilized zirconia 
650 0 4 |a Yttria-stabilized zirconia electrolyte 
650 0 4 |a Yttria-stabilized-zirconia 
650 0 4 |a Yttrium metallography 
650 0 4 |a Yttrium oxide 
700 1 0 |a Adamová, N.  |e author 
700 1 0 |a Bouzek, K.  |e author 
700 1 0 |a Budáč, D.  |e author 
700 1 0 |a Carda, M.  |e author 
700 1 0 |a Paidar, M.  |e author 
700 1 0 |a Rečková, V.  |e author 
773 |t Energies