Deep Learning-Based Next-Generation Waveform for Multiuser VLC Systems

Due to the growing number of users, power, and spectral effectiveness, most communication systems are complex and difficult to implement on a large scale. Artificial Intelligence (AI) has played an outstanding role in the implementation of theoretical systems in the real world, with less complexity...

Full description

Bibliographic Details
Main Authors: Affan, A. (Author), Asif, H.M (Author), Raahemifar, K. (Author), Tarhuni, N. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03188nam a2200565Ia 4500
001 0.3390-s22072771
008 220421s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Deep Learning-Based Next-Generation Waveform for Multiuser VLC Systems 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22072771 
520 3 |a Due to the growing number of users, power, and spectral effectiveness, most communication systems are complex and difficult to implement on a large scale. Artificial Intelligence (AI) has played an outstanding role in the implementation of theoretical systems in the real world, with less complexity achieving better results. In this direction, we compare the Non-Orthogonal Multiple Access (NOMA) technique for a multiuser Visible Light Communication (VLC) system with Successive Interference Cancellation (SIC) for two types of detectors: (1) the deep learning-based system and (2) the traditional maximum likelihood (ML) decoder-based system. For multiplexing, we compare the variations of novel Orbital Angular Momentum (OAM) multiplexing and Orthogonal Frequency Division Multiplexing (OFDM) with Index Modulation (IM). In this article, we implement OFDM-IM and OAM-IM for four users for the Gaussian fading MIMO Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) VLC channels. The suggested systems’ bit error rate (BER) performances are compared in simulations for a wide range of Signal-to-Noise Ratios (SNRs), which shows that deep learning-based systems outperform the ML-based system for both users to ensure better decoding at the receiver end, especially at higher SNR values. The detection error is lower in a deep learning-based system at around 20% and around 30% for low SNR and high SNR values, respectively. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a article 
650 0 4 |a artificial intelligence 
650 0 4 |a beamforming 
650 0 4 |a Beamforming 
650 0 4 |a Bit error rate 
650 0 4 |a Communications systems 
650 0 4 |a Decoding 
650 0 4 |a deep learning 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a High signal-to-noise ratio 
650 0 4 |a Index modulation 
650 0 4 |a light 
650 0 4 |a Ma ximum likelihoods 
650 0 4 |a maximum likelihood 
650 0 4 |a Maximum likelihood 
650 0 4 |a maximum likelihood method 
650 0 4 |a Maximum-likelihood 
650 0 4 |a Multiusers 
650 0 4 |a new technologies used in massive MIMO 
650 0 4 |a New technology used in massive MIMO 
650 0 4 |a orbital angular momentum 
650 0 4 |a Orbital angular momentum 
650 0 4 |a Orthogonal frequency division multiplexing 
650 0 4 |a Orthogonal frequency-division multiplexing 
650 0 4 |a signal noise ratio 
650 0 4 |a Signal receivers 
650 0 4 |a Signal to noise ratio 
650 0 4 |a simulation 
650 0 4 |a theoretical study 
650 0 4 |a Visible light communication 
650 0 4 |a waveform 
700 1 0 |a Affan, A.  |e author 
700 1 0 |a Asif, H.M.  |e author 
700 1 0 |a Raahemifar, K.  |e author 
700 1 0 |a Tarhuni, N.  |e author 
773 |t Sensors