Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective

Accurate and reliable stride length estimation modules play a significant role in Pedestrian Dead Reckoning (PDR) systems, but the accuracy of stride length calculation suffers from individual differences. This paper presents a stride length prediction strategy for PDR systems that can be adapted ac...

Full description

Bibliographic Details
Main Authors: Huang, C. (Author), Wei, J. (Author), Xu, Z. (Author), Zhang, F. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02834nam a2200409Ia 4500
001 0.3390-s22082840
008 220421s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22082840 
520 3 |a Accurate and reliable stride length estimation modules play a significant role in Pedestrian Dead Reckoning (PDR) systems, but the accuracy of stride length calculation suffers from individual differences. This paper presents a stride length prediction strategy for PDR systems that can be adapted across individuals and broad walking velocity fields. It consists of a multi-gait division algorithm, which can divide a full stride into push-off, swing, heel-strike, and stance based on multi-axis IMU data. Additionally, based on the acquired gait phases, the correlation between multiple features of distinct gait phases and the stride length is analyzed, and multi regression models are merged to output the stride length value. In experimental tests, the gait segmentation algorithm provided gait phases division with the F-score of 0.811, 0.748, 0.805, and 0.819 for stance, push-off, swing, heel-strike, respectively, and IoU of 0.482, 0.69, 0.509 for push-off, swing, heel-strike, respectively. The root means square error (RMSE) of our proposed stride length estimation was 151.933, and the relative error for total distance in varying walking speed tests was less than 2%. The experimental results validated that our proposed gait phase segmentation algorithm can accurately recognize gait phases for individuals with wide walking speed ranges. With no need for parameter modification, the stride length method based on the fusion of multiple predictions from different gait phases can provide better accuracy than the estimations based on the full stride. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Gait analysis 
650 0 4 |a Gait phasis 
650 0 4 |a gait recognition 
650 0 4 |a Gait recognition 
650 0 4 |a Gait-phase 
650 0 4 |a indoor localization 
650 0 4 |a Indoor localization 
650 0 4 |a Indoor positioning systems 
650 0 4 |a inertial measurement units 
650 0 4 |a Inertial measurements units 
650 0 4 |a Length estimation 
650 0 4 |a Pattern recognition 
650 0 4 |a Push offs 
650 0 4 |a Regression analysis 
650 0 4 |a Stride length 
650 0 4 |a stride length estimation 
650 0 4 |a Stride length estimation 
650 0 4 |a stride segmentation 
650 0 4 |a Stride segmentation 
650 0 4 |a Velocity 
700 1 0 |a Huang, C.  |e author 
700 1 0 |a Wei, J.  |e author 
700 1 0 |a Xu, Z.  |e author 
700 1 0 |a Zhang, F.  |e author 
773 |t Sensors