Use of Genetic Algorithms for Design an FPGA-Integrated Acoustic Camera

The goal of this paper is to design a broadband acoustic camera using micro-electromechanical system (MEMS) microphones. The paper describes how an optimization of the microphone array has been carried out. Furthermore, the final goal of the described optimization is that the gain in the desired dir...

Full description

Bibliographic Details
Main Authors: Grubeša, S. (Author), Petošić, A. (Author), Stamać, J. (Author), Suhanek, M. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02694nam a2200469Ia 4500
001 0.3390-s22082851
008 220421s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Use of Genetic Algorithms for Design an FPGA-Integrated Acoustic Camera 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22082851 
520 3 |a The goal of this paper is to design a broadband acoustic camera using micro-electromechanical system (MEMS) microphones. The paper describes how an optimization of the microphone array has been carried out. Furthermore, the final goal of the described optimization is that the gain in the desired direction and the attenuation of side lobes is maximized at a frequency up to 4 kHz. Throughout the research, various shapes of microphone arrays and their directivity patterns have been considered and analyzed using newly developed algorithms implemented in Matlab. A hemisphere algorithm, genetic algorithm, and genetic square algorithm were used to find the optimal position and number of microphones placed on an acoustic camera. The proposed acoustic camera design uses a large number of microphones for high directional selectivity, while a field programmable gate array system on a chip (FPGA SoC) is selected as the processing element of the system. According to the obtained results, three different acoustic camera prototypes were developed. This paper presents simulations of their characteristics, compares the obtained measurements, and discusses the positive and negative sides of each acoustic camera prototype. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Acoustic camera 
650 0 4 |a Array systems 
650 0 4 |a beamforming 
650 0 4 |a Beamforming 
650 0 4 |a broadband acoustic camera 
650 0 4 |a Broadband acoustic camera 
650 0 4 |a Broadband acoustics 
650 0 4 |a Cameras 
650 0 4 |a Field programmable gate array system on a chip 
650 0 4 |a Field programmable gate arrays (FPGA) 
650 0 4 |a FPGA SoC 
650 0 4 |a genetic algorithm 
650 0 4 |a Genetic algorithms 
650 0 4 |a Integrated circuit design 
650 0 4 |a MATLAB 
650 0 4 |a MEMS 
650 0 4 |a MEMS microphones 
650 0 4 |a Micro-electromechanical system microphone 
650 0 4 |a Microphone arrays 
650 0 4 |a Microphones 
650 0 4 |a Optimisations 
650 0 4 |a Programmable logic controllers 
650 0 4 |a System on a chip 
650 0 4 |a System-on-chip 
650 0 4 |a Systems-on-a-chip 
700 1 0 |a Grubeša, S.  |e author 
700 1 0 |a Petošić, A.  |e author 
700 1 0 |a Stamać, J.  |e author 
700 1 0 |a Suhanek, M.  |e author 
773 |t Sensors