Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene

Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon de...

Full description

Bibliographic Details
Main Authors: Buda, F. (Author), Calvani, D. (Author), Filippov, D.V (Author), Kozdra, M. (Author), Liu, X. (Author), Melcrová, A. (Author), Overkleeft, H.S (Author), Roos, W.H (Author), Schneider, G.F (Author), van der Ham, A. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
PAH
Online Access:View Fulltext in Publisher
LEADER 02002nam a2200301Ia 4500
001 10-1038-s41467-022-29429-8
008 220425s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-29429-8 
520 3 |a Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind. The 2.5 nm thin films are mechanically stable, able to be free-standing over micrometer distances, held together solely by supramolecular interactions. Using a combination of computational chemistry and microscopic imaging techniques, thin films are studied on both a molecular and microscopic scale. Their mechanical strength is quantified using AFM nanoindentation, showing their capability of withstanding a point load of 26 ± 9 nN, when freely spanning over a 1 μm aperture, with a corresponding Young’s modulus of 6 ± 4 GPa. Our thin films constitute free-standing, non-covalent thin films based on a small PAH. © 2022, The Author(s). 
650 0 4 |a chemical bonding 
650 0 4 |a chemistry 
650 0 4 |a drug 
650 0 4 |a molecular analysis 
650 0 4 |a PAH 
700 1 |a Buda, F.  |e author 
700 1 |a Calvani, D.  |e author 
700 1 |a Filippov, D.V.  |e author 
700 1 |a Kozdra, M.  |e author 
700 1 |a Liu, X.  |e author 
700 1 |a Melcrová, A.  |e author 
700 1 |a Overkleeft, H.S.  |e author 
700 1 |a Roos, W.H.  |e author 
700 1 |a Schneider, G.F.  |e author 
700 1 |a van der Ham, A.  |e author 
773 |t Nature Communications