A deep learning-based hybrid model of global terrestrial evaporation

Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our li...

Full description

Bibliographic Details
Main Authors: Hulsman, P. (Author), Koppa, A. (Author), Miralles, D.G (Author), Poyatos, R. (Author), Rains, D. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02184nam a2200397Ia 4500
001 10-1038-s41467-022-29543-7
008 220425s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a A deep learning-based hybrid model of global terrestrial evaporation 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-29543-7 
520 3 |a Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we train deep learning algorithms using eddy covariance and sap flow data together with satellite observations, aiming to model transpiration stress (St), i.e., the reduction of Et from its theoretical maximum. Then, we embed the new St formulation within a process-based model of E to yield a global hybrid E model. In this hybrid model, the St formulation is bidirectionally coupled to the host model at daily timescales. Comparisons against in situ data and satellite-based proxies demonstrate an enhanced ability to estimate St and E globally. The proposed framework may be extended to improve the estimation of E in Earth System Models and enhance our understanding of this crucial climatic variable. © 2022, The Author(s). 
650 0 4 |a algorithm 
650 0 4 |a article 
650 0 4 |a deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a ecosystem 
650 0 4 |a Ecosystem 
650 0 4 |a Eddy covariance 
650 0 4 |a evaporation 
650 0 4 |a evapotranspiration 
650 0 4 |a physiological stress 
650 0 4 |a plant leaf 
650 0 4 |a Plant Leaves 
650 0 4 |a Plant Transpiration 
650 0 4 |a sap flow 
650 0 4 |a sweating 
650 0 4 |a theoretical study 
650 0 4 |a water 
650 0 4 |a Water 
700 1 |a Hulsman, P.  |e author 
700 1 |a Koppa, A.  |e author 
700 1 |a Miralles, D.G.  |e author 
700 1 |a Poyatos, R.  |e author 
700 1 |a Rains, D.  |e author 
773 |t Nature Communications